Living Plant-Mediated Synthesis of Nanoparticles

Document Type : Review Article


1 Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.



Techniques to fabricate nanostructured materials are in constant development. These techniques initiated with physical and chemical approaches and now are developed to biosynthesis and green synthesis techniques. Nowadays, bioactive compounds from microbial cells and plant extracts are hugely tested and employed for the green synthesis of nanoparticles. Similar to microbial cells that can produce intracellular nanostructures, some plants can synthesize and maintain nanostructures in their tissue. The evidence of these finding is the phytomining technology. Now it is known that various parameters such as soil pH, geographical area, and ionic precursor can influence the process of in situ fabrication of nanoparticles. Plant metabolites such as terpenoids, polyphenols, reducing sugars, alkaloids, phenolic acids, and proteins play a major role in the reduction of metal ions as well as stabilization of the produced nanoparticles. These in situ synthesized nanoparticles can be extracted and purified via ashing techniques.


  1. Mehr FP, Khanjani M, Vatani P. Synthesis of nano-ag particles using sodium borohydride. Oriental Journal of Chemistry. 2015; 31(3):1831-3. [DOI:10.13005/ojc/310367]
  2. Ebrahiminezhad A, Zare M, Kiyanpour S, Berenjian A, Niknezhad SV, Ghasemi Y. Biosynthesis of xanthan gum coated iron nanoparticles by using Xanthomonas campestris. IET Nanobiotechnology. 2017; 12(3):254-8.
  3. Ebrahiminezhad A, Zare Hoseinabadi A, Sarmah AK, Taghizadeh S, Ghasemi Y, Berenjian A. Plant-mediated synthesis and applications of Iron nanoparticles. Molecular Biotechnology. 2018; 60(2):154-68. [DOI:10.1007/s12033-017-0053-4] [PMID]
  4. Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7(1):015018.
  5. Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R, et al. Physicochemical and biological characteristics of the nanostructured polysaccharide‐iron hydrogel produced by microorganism Klebsiella oxytoca. Journal of Basic Microbiology. 2017; 57(2):132-40. [DOI:10.1002/jobm.201600417]
  6. Kianpour S, Ebrahiminezhad A, Negahdaripour M, Mohkam M, Mohammadi F, Niknezhad S, et al. Characterization of biogenic Fe (III)‐binding exopolysaccharide nanoparticles produced by Ralstonia sp SK03. Biotechnology Progress. 2018; 34(5):1167-76. [DOI:10.1002/btpr.2660] [PMID]
  7. Ali DM, Sasikala M, Gunasekaran M, Thajuddin N. Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, oscillatoria willei NTDM01. Digest Journal of Nanomaterials and Biostructures. 2011; 6(2):385-90.
  8. Chokshi K, Pancha I, Ghosh T, Paliwal C, Maurya R, Ghosh A, et al. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Advances. 2016; 6(76):72269-74. [DOI:10.1039/C6RA15322D]
  9. Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalga chaetomorpha linum. Applied Nanoscience. 2013; 3(3):229-33. [DOI:10.1007/s13204-012-0125-5]
  10. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience. 2015; 5(4):499-504. [DOI:10.1007/s13204-014-0341-2]
  11. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts. 2011; 1(3):149-52. [PMID] [PMCID]
  12. Prasad TN, Kambala VSR, Naidu R. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of Applied Phycology. 2013; 25(1):177-82. [DOI:10.1007/s10811-012-9851-z]
  13. Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience. 2015; 5(6):703-9. [DOI:10.1007/s13204-014-0366-6]
  14. Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chemical Industry & Chemical Engineering Quarterly. 2017; 23(1):31-7.
  15. Ebrahiminezhad A, Taghizadeh S, Berenjian A, Heidaryan Naeini F, Ghasemi Y. Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanosci Nanotechnol Asia. 2016; 6:1-9.
  16. Ebrahiminezhad A, Taghizadeh S, Berenjiand A, Rahi A, Ghasemi Y. Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Nanoscience & Nanotechnology-Asia. 2017; 7(1):104-12. [DOI:10.5185/amlett.2016.6458]
  17. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y. Green synthesis of silver nanoparticles using Mediterranean Cypress (cupressus sempervirens) leaf extract. American Journal of Biochemistry and Biotechnology. 2017; 13(1):1-6. [DOI:10.3844/ajbbsp.2017.1.6]
  18. Ebrahiminezhad A, Taghizadeh S, Ghasemi Y, Berenjian A. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of the Total Environment. 2017; 621:1527-32. [DOI:10.1016/j.scitotenv.2017.10.076]
  19. Ebrahiminezhad A, Zare Hoseinabadi A, Berenjian A, Ghasemi Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Processing and Synthesis. 2017; 6(5):1-8. [DOI: 10.1515/gps-2016-0133]
  20. Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea Torresdey JL, van Agterveld D. Accumulation of gold nanoparticles in Brassic juncea. International Journal of Phytoremediation. 2007; 9(3):197-206. [DOI:10.1080/15226510701376026] [PMID]
  21. Wilson Corral V, Anderson CW, Rodriguez Lopez M. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. Journal of Environmental Management. 2012; 111:249-57. [DOI:10.1016/j.jenvman.2012.07.037] [PMID]
  22. Sheoran V, Sheoran AS, Poonia P. Phytomining: A review. Minerals Engineering. 2009; 22(12):1007-19. [DOI:10.1016/j.mineng.2009.04.001]
  23. Gardea Torresdey J, Parsons J, Gomez E, Peralta Videa J, Troiani H, Santiago P, et al. Formation and growth of au nanoparticles inside live alfalfa plants. Nano Letters. 2002; 2(4):397-401. [DOI:10.1021/nl015673]
  24. Gardea Torresdey JL, Gomez E, Peralta Videa JR, Parsons JG, Troiani H, Jose Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003; 19(4):1357-61. [DOI:10.1021/la020835i]
  25. Bali R, Razak N, Lumb A, Harris A. The synthesis of metallic nanoparticles inside live plants. Pepar presented at: International Conference on Nanoscience and Nanotechnology. 3-7 July 2006; Brisbane, Australia. [DOI:10.1109/ICONN.2006.340592]
  26. Mukundan D, Vasanthakumari R. Phytoengineered nanomaterials and their applications. In: Prasad R, Kumar V, Kumar M, editors. Nanotechnology. Berlin: Springer; 2017.
  27. Weier E. Factors affecting the reduction of silver nitrate by chloroplasts. American Journal of Botany. 1938; 25(7):501-7. [DOI:10.1002/j.1537-2197.1938.tb09251.x]
  28. Starnes DL, Jain A, Sahi SV. In planta engineering of gold nanoparticles of desirable geometries by modulating growth conditions: An environment-friendly approach. Environmental Science & Technology. 2010; 44(18):7110-5.
  29. Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello Hurtado F. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. Journal of Hazardous Materials. 2012; 219-220:111-8. [DOI:10.1016/j.jhazmat.2012.03.058]
  30. Armendariz V, Herrera I, Jose yacaman M, Troiani H, Santiago P, Gardea Torresdey JL. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. Journal of Nanoparticle Research. 2004; 6(4):377-82. [DOI:10.1007/s11051-004-0741-4]
  31. Shekhawat G, Arya V. Biological synthesis of ag nanoparticles through in vitro cultures of Brassica juncea C zern. Advanced Materials Research. 2009; 67:295-9.
  32. Keshavarzi M, Davoodi D, Pourseyedi S, Taghizadeh S. The effects of three types of alfalfa plants (medicago sativa) on the biosynthesis of gold nanoparticles: An insight into phytomining. Gold Bulletin. 2018; 51(3):1-12. [DOI:10.1007/s13404-018-0237-0]
  33. Gan PP, Li SF. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Reviews in Environmental Science and Bio/Technology. 2012; 11(2):169-206. [DOI:10.1007/s11157-012-9278-7]
  34. Tripathi DK, Singh S, Singh S, Dubey NK, Chauhan DK. Impact of nanoparticles on photosynthesis: Challenges and opportunities. Materials Focus. 2016; 5(5):405-11. [DOI:10.1166/mat.2016.1327]
  35. Marchiol L, Mattiello A, Pošćić F, Giordano C, Musetti R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Research Letters. 2014; 9(1):101. [DOI:10.1186/1556-276X-9-101] [PMID] [PMCID]
  36. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, et al. Formation of metallic copper nanoparticles at the soil-root interface. Environmental Science & Technology. 2008; 42(5):1766-72.
  37. Corredor E, Testillano PS, Coronado MJ, Gonzalez Melendi P, Fernandez Pacheco R, Marquina C, et al. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biology. 2009; 9:45. [DOI:10.1186/1471-2229-9-45]
  38. Koontz HV, Berle KL. Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiology. 1980; 65(2):336-9. [DOI:10.1104/pp.65.2.336] [PMID] [PMCID]
  39. Haverkamp RG, Marshall AT, van Agterveld D. Pick your carats: Nanoparticles of gold-silver-copper alloy produced in vivo. Journal of Nanoparticle Research. 2007; 9(4):697-700.
  40. Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. Journal of Nanoparticle Research. 2008; 10(4):691-5.