Ancient and Novel Forms of Silver in Medicine and Biomedicine

Document Type : Review Article


Fasa University of Medical Sciences


Silver has been known and used as a potent antimicrobial and wound healing agent since ancient time. Silver compounds have had other ancient applications through which Greeks, Romans and Egyptians had used silver compounds as food and water preservative. Silver and silver-based antimicrobials were put away after the discovery of antibiotics. Meanwhile, with almost a century application of antibiotics, resistant microbial strains appeared and antibiotics are going to become less and less effective. Fortunately, our traditional weapon against microorganisms reemerged in a novel form to reclaim again. Silver nanoparticles (AgNPs) are well-known as potent and novel antimicrobial agents. AgNPs would disturb microbial growth through inhibiting the absorption of phosphate, collapsing the proton motive force, forming complexes with DNA, enzyme inactivation, as well as inhibition of glucose oxidation. Its follows attacking the respiratory chain, changing the permeability and potential of the cell membrane, and inducing bacteria into a viable but non-culturable (VBNC) state and eventually killing them. 


  1. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome research. 2006;5(4):916-24.
  2. Hill WR, Pillsbury DM. Argyria: the pharmacology of silver: Williams & Wilkins Baltimore; 1939.
  3. Schneider G. Silver nitrate prophylaxis. Canadian Medical Association Journal. 1984;131(3):193.
  4. Clement JL, Jarrett PS. Antibacterial silver. Met Based Drugs. 1994;1(5-6):467-82.
  5. Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO journal. 2000;46(6):S47-S52.
  6. Klasen H. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26(2):117-30.
  7. Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annual Reviews in Microbiology. 1996;50(1):753-89.
  8. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992;27(1):72-9.
  9. Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials.
  10. Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y. Synthesis, characterization and anti-Listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci. 2012;8(6):868-74.
  11. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc. 2012 Dec 20;33(12):3957-62.
  12. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B. 2013 Feb 1;102:534-9.
  13. Ebrahiminezhad A, Najafipour S, Kouhpayeh A, Berenjian A, Rasoul-Amini S, Ghasemi Y. Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids Surf B. 2014;118:249-53.
  14. Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y. Impacts of Iron Oxide Nanoparticles on the Invasion Power of Listeria monocytogenes. Curr Nanosci. 2014;2014(10):382-8.
  15. Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr Nanosci. 2015;11(1):113-9.
  16. Ebrahiminezhad A, Varma V, Yang S, Berenjian A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol. 2015:1-8.
  17. Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A. Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification. Nanomaterials. 2015;6(1):1.
  18. Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. Lipoamino Acid Coated Superparamagnetic Iron Oxide Nanoparticles Concentration and Time Dependently Enhanced Growth of Human Hepatocarcinoma Cell Line (Hep-G2). Journal of Nanomaterials. 2015;2015.
  19. Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine. 2012;7:2767.
  20. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012;18(3):268-81.
  21. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine. 2015;2015.
  22. De Simone S, Gallo A, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. Journal of Materials Science: Materials in Medicine. 2014;25(9):2205-14.
  23. Schreurs W, Rosenberg H. Effect of silver ions on transport and retention of phosphate by Escherichia coli. Journal of Bacteriology. 1982;152(1):7-13.
  24. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and environmental microbiology. 2008;74(7):2171-8.
  25. Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Critical Reviews in Environmental Science and Technology. 1989;18(4):295-315.
  26. Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial agents and chemotherapy. 2002;46(8):2668-70.
  27. Ahearn D, May L, Gabriel M. Adherence of organisms to silver-coated surfaces. Journal of industrial microbiology. 1995;15(4):372-6.
  28. Richards R, Odelola H, Anderson B. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios. 1983;39(157-158):151-7.
  29. Furr J, Russell A, Turner T, Andrews A. Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. journal of Hospital Infection. 1994;27(3):201-8.
  30. Rahn RO. Nondimer damage in deoxyribonucleic acid caused by ultraviolet radiation. Photochemical and photobiological reviews: Springer; 1979. p. 267-330.
  31. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004;275(1):177-82.
  32. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-20.
  33. Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-8.
  34. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27(1):76-83.
  35. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed research international. 2014;2014.
  36. Xiu Z-M, Ma J, Alvarez PJ. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol. 2011;45(20):9003-8.
  37. Xiu Z-m, Zhang Q-b, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12(8):4271-5.
  38. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology. 2013;13(5):349-61.
  39. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395-401.
  40. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews. 2013;65(13):1803-15.
  41. Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G-y. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16(6):2789-96.
  42. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, You-Sheng O-Y, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115-22.
  43. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2-3):341-53.
  44. Andrews JM. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy. 2002;49(6):1049-.
  45. Holt KB, Bard AJ. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005;44(39):13214-23.
  46. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.
  47. Dimitrijevic NM, Bartels DM, Jonah CD, Takahashi K, Rajh T. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J Phys Chem B. 2001;105(5):954-9.
  48. Kim H-S, Lee K-H, Kim S-G. Growth of monodisperse silver nanoparticles in polymer matrix by spray pyrolysis. Aerosol Sci Technol. 2006;40(7):536-44.
  49. Pal A, Shah S, Devi S. Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys. 2009;114(2):530-2.
  50. Pol VG, Srivastava D, Palchik O, Palchik V, Slifkin M, Weiss A, et al. Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir. 2002;18(8):3352-7.
  51. Saifuddin N, Wong C, Yasumira A. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry. 2009;6(1):61-70.
  52. Song KC, Lee SM, Park TS, Lee BS. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng. 2009;26(1):153-5.
  53. Starowicz M, Stypuła B, Banaś J. Electrochemical synthesis of silver nanoparticles. Electrochem Commun. 2006;8(2):227-30.
  54. Basavegowda N, Idhayadhulla A, Lee YR. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Mater Sci Eng, C. 2014;43(0):58-64.
  55. Cruz D, Fale PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B. 2010;81(1):67-73.
  56. Doughman SD, Krupanidhi S, Sanjeevi CB. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev. 2007;3(3):198-203.
  57. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B. 2010;80(1):26-33.
  58. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf Physicochem Eng Aspects. 2010;364(1):34-41.
  59. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45(7):1065-71.
  60. Ghaffari-Moghaddam M, Hadi-Dabanlou R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J Ind Eng Chem. 2014;20(2):739-44.
  61. He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, et al. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine. 2013;8:1809-15.
  62. Jean-Denis JB, Pezet R, Tabacchi R. Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography–atmospheric pressure photoionisation mass spectrometry. J Chromatogr. 2006;1112(1):263-8.
  63. Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chem Eng. 2013;2(3):367-76.
  64. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci. 2011;353(2):433-44.
  65. Mo Y-y, Tang Y-k, Wang S-y, Ling J-m, Zhang H-b, Luo D-y. Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater Lett. 2015;144:165–7.
  66. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10(8):859-62.
  67. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir. 2010;27(1):264-71.
  68. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. Int J Env Res Public Health. 2013;10(10):5221-38.
  69. Rajasekharreddy P, Rani PU. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng, C. 2014;39:203-12.
  70. Reddy NJ, Nagoor Vali D, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng, C. 2014;34(0):115-22.
  71. Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B. 2009;73(2):332-8.
  72. Sathishkumar M, Sneha K, Yun Y-S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101(20):7958-65.
  73. Šileikaitė A, Prosyčevas I, Puišo J, Juraitis A, Guobienė A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci-Medzg. 2006;12:287-91.
  74. Song JY, Jang H-K, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44(10):1133-8.
  75. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf Physicochem Eng Aspects. 2014;444:226-31.
  76. Vivekanandhan S, Schreiber M, Mason C, Mohanty AK, Misra M. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloids Surf B. 2014;113(2014):169-75.
  77. Yilmaz M, Turkdemir H, Kilic MA, Bayram E, Cicek A, Mete A, et al. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys. 2011;130(3):1195-202.