A Survey on the Role of Fetal Microchimerism in the Maternal Body

Document Type : Review Article


PhD student of molecular medicine, school of advanced technologies in medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran


Microchimerism is explained as the simultaneous presence of a few foreign cells with different genetic origins of different individuals in a person. Transfer of these cells through blood transfusion, organ transplantation and particularly the mutual transfer of cells between the mother and fetus during pregnancy is possible. This article is an overview of the role of fetal cell microchimerism in maternal health and disease, especially autoimmune disorders and cancer. The original and related articles were found by search in PubMed, Scopus, Springer, Sciencedirect with an emphasis on literature published in the period 2000 to 2015. It was concluded that microchimeric cell can play different roles in maternal body, including natural microchimerism (bearing no biological role), utility (damaged tissue repair), and pathogenesis (causing autoimmune disease and cancer). Further studies and more in-depth knowledge about these cells may help explaining their new roles and using them in treatment or determining the prognosis of various diseases.


  1. Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 2001; 41:1524–1530.
  2. Dawe GS, Tan XW, Xiao Z-Ch. Cell Migration from Baby to Mother. Cell Adhesion & Migration 2007; 1 :( 1)19-27.
  3. Srivatsa B, Srivatsa S, Johnson KL, Bianchi DW. Maternal cell microchimerism in newborn tissues. J Pediatr 2003; 142:31-35.
  4. Stevens AM, Hermes HM, Kiefer MM, Rutledge JC, Nelson JL. Chimeric maternal cells with tissue specific antigen expression and morphology are common in infant tissues. Pediatr Dev Pathol 2009; 12(5):337-46.
  5. Walknowska J, Conte F, Grumbach M. Practical and theoretical implications of fetal–maternal lymphocyte transfer. Lancet 1969; 1: 1119–1122.
  6. Schindler A, Martin-du-Pan R. Prenatal diagnosis of fetal lymphocytes in the maternal blood. Obstet Gynecol 1972; 40:340–346.
  7. Anderson J, Ferguson-Smith M. Nature’s transplant. BMJ 1971; 2:166–167.
  8. Nelson JL. Maternal-fetal immunology and autoimmune disease: is some autoimmune disease auto-alloimmune or allo-autoimmune? .Arthritis and Rheumatism 1996; 39(2): 191–194.
  9. Khosrotehrani K, BianchiDW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 2005; 118:1559–1563.
  10. Fujiki Y, Tao K, Bianchi DW, Giel-Moloney M, Leiter AB, Johnson KL. Quantification of green fluorescent protein by in vivo imaging, PCR, and flow cytometry: comparison of transgenic strains and relevance for fetal microchimerism. Cytometry. 2008; A75:111–118.
  11. Stevens AM, Hermes H, Rutledge J, Buyon J, Nelson JL. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 2003; 362:1617–1623.
  12. Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, et al. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 2002; 100:2845–2851.
  13. Pang JM, Guthrie KA, Furst DE, Lambert NC, Erickson TD, Yan Z, et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum 2004; 50:906–914.
  14. Pritchard S, Hoffman AM, Johnson KL, Bianchi DW. Pregnancy-associated progenitor cells: an under-recognized potential source of stem cell in maternal lung. Placenta 2011; 32:S298–S303.
  15. Johnson KL, Tao K, Stroh H, Kallenbach L, Peter I, Richey L, et al. Increased fetal cell trafficking in murine lung following complete pregnancy loss from exposure to lipopolysaccharide. Fertil Steril 2010; 93:1718–1721.
  16. Pritchard S, Wick HC, Slonim DK, Johnson KL, Bianchi DW. Comprehensive Analysis of Genes Expressed by Rare Microchimeric Fetal Cells in the Maternal Mouse Lung. Biology of reproduction 2012; 87(2):1–6.
  17. Sunami R, Komuro M, Tagaya H, Hirata S. Migration of microchimeric fetal cells into maternal circulation before placenta formation. Chimerism 2010; 1:66–68.
  18. Sunami R, Komuro M, Yuminamochi T, Hoshi K, Hirata S. Fetal microchimerism develops through the migration of fetus derived cells to the maternal organs early after implantation. J Reprod Immunol 2010; 84:117–123.
  19. Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS. Fetal microchimerism in the maternal brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 2005; 23:1443–1452.
  20. O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, et al. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 2004; 364:179–82.
  21. Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, et al. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys ResCommun 2004; 325:961–967.
  22. Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, et al. Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod 2007; 22:654–661.
  23. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intra thyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab 2002; 87(7):3315–3320.
  24. Renne´ C, Ramos Lopez E, Steimle-Grauer SA, Ziolkowski P, Pani MA,Luther C, Holzer K, et al. Thyroid fetal male microchimerism in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid infiltrating lymphocytes is more prevalent in Hashimoto’s thyroiditis and Graves’ disease than in follicular adenomas. J Clin Endocrinol Metab 2004; 89:5810–5814.
  25. Khosrotehrani K, Bianchi DW. Fetal microchimerism: helpful or harmful to the parous woman? Curr Opin Obstet Gynecol 2003; 15:195–199.
  26. MoldJ E, Venkatasubrahmanyam S, BurtT D, Michae¨lsson J, Rivera JM, Galkina SA, et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 2010; 330:1695–1699.
  27. Fugazzola L, Cirello V, Beck-Peccoz P. Fetal microchimerism as an explanation of disease. Nature Reviews Endocrinology 2011; 7: 89–97.
  28. Lambert NC, Evans PC, Hashizumi TL, Maloney S, Gooley T, Furst DE, et al. Cutting Edge: persistent fetal microchimerism in T lymphocytes is associated with HLADQA1*0501: implications in autoimmunity. J Immunol 2000; 164:5545–5548.
  29. Artlett CM, O’Hanlon TP, Lopez AM, Song YW, Miller FW, Rider LG. HLA-DQA1 is not an apparent risk factor for microchimerism in patients with various autoimmune diseases and in healthy individuals. Arthritis Rheum 2003; 48:2567–2572.
  30. Miech RP. The role of fetal microchimerism in autoimmune disease. Int J Clin Exp Med 2010; 3:164–168.
  31. Rak JM, Maestroni L, Balandraud N, Guis S, Boudinet H, Guzian MC, et al. Transfer of the shared epitope through microchimerism in women with rheumatoid arthritis. Arthritis Rheum 2009; 60:73–80.
  32. Chan WF, Atkins CJ, Naysmith D, van der Westhuizen N, Woo J, Nelson JL. Microchimerism in the rheumatoid nodules of rheumatoid arthritis patients. Arthritis Rheum 2012; 64:380–388.
  33. Staykova ND. Rheumatoid arthritis and thyroid abnormalities. Folia Med (Plovdiv) 2007; 49:5–12.
  34. Mosca M, Curcio M, Lapi S, Valentini G, D’Angelo S, Rizzo G, et al. Correlations of Y chromosome microchimerism with disease activity in patients with SLE. Analysis of preliminary data. Ann Rheum Dis 2003; 62:651–654.
  35. Johnson KL, McAlindon TE, Mulcahy E, Bianchi DW. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis Rheum 2001; 44:2107–2111.
  36. Abbud Filho M, Pavarino-Bertelli EC, Alvarenga MP, Fernandes IM, Toledo RA, Tajara EH, et al. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant Proc 2002; 34:2951–2952.
  37. Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjogren’s syndrome. Rheumatology (Oxford) 2002; 41:490–495.
  38. Mijares-Boeckh-Behrens T, Selva-O’Callaghan A, Solans-Laque R, Angel Bosch-Gil J, Vilardell-Tarres M. Fetal microchimerism in Sjögren’s syndrome. Ann Rheum Dis 2001; 60:896–904.
  39. Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto’s thyroiditis .J Clin Endocrinol Metab 2001;86:2494–2498.
  40. Imaizumi M, Pritsker A, Kita M, Ahmad L, Unger P, Davies TF. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies .Endocrinology 2001; 142(2):823–829.
  41. Imaizumi M, Pritsker A, Unger P, Davies TF. Intra thyroidal fetal microchimerism in pregnancy and postpartum. Endocrinology 2002; 143(1):247–253.
  42. Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, et al. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur J Endocrinol 2006; 154:237–241.
  43. Friedrich N, Schwarz S, Thonack J, John U, Wallaschofski H. Association between parity and autoimmune thyroiditis in a general female population. Autoimmunity 2008; 41:174–180.
  44. Bloch EM, Reed WF, Lee TH, Montalvo L, Shiboski S, Custer B, et al. Male microchimerism in peripheral blood leukocytes from women with multiple sclerosis. Chimerism 2011; 2:6–10.
  45. Ando T, Davies TF. Self-recognition and the role of fetal microchimerism. Best Practice and Research 2004; 18(2):197-211.
  46. Galofre JC, Davies TF. Autoimmune thyroid disease in pregnancy: a review. Journal of Women’s Health 2009; 18(11):1847–1856.
  47. Weetman AP. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol 2010; 6:311–318.
  48. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW . Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 2001; 358:2034–2038.
  49. Badenhoop K. Intra thyroidal microchimerism in Graves’ disease or Hashimoto’s thyroiditis: regulation of tolerance or allo immunity by fetal-maternal immune interactions? Eur J Endocrinol 2004; 150:421–423.
  50. Klonisch T, DrouinR .Fetal-maternal exchange of multipotent stem/progenitor cells: microchimerism in diagnosis and disease. Trends Mol Med 2009; 15:510–518.
  51. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 2004; 292:75–80.
  52. Galofr´e JC. Microchimerism in Graves’ disease. Journal of Thyroid Research2012; 10:1155-1162.
  53. Gannage´ M, Amoura Z, Lantz O, Piette JC, Caillat-Zucman S. Feto-maternal microchimerism in connective tissue diseases. Eur J Immunol 2002; 32:3405–3413.
  54. Invernizzi P, De Andreis C, Sirchia SM, Battezzati PM, Zuin M, Rossella F, et al. Blood fetal microchimerism in primary biliary cirrhosis. Clin Exp Immunol. 2000 Dec; 122(3): 418–422.
  55. Corpechot C, Barbu V, Chazouilleres O, Poupon RE, Poupon R. Fetal microchimerism in primary biliary cirrhosis. J Hepatol 2000; 33:696–700.
  56. Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P, et al. Parity and the risk of autoimmune thyroid disease: a community-based study. J Clin Endocrinol Metab 2005; 90:5309–5312.
  57. Bu¨ low Pedersen I, Laurberg P, Knudsen N, Jørgensen T, Perrild H, Ovesen L, et al. Lack of association between thyroid autoantibodies and parity in a population study argues against microchimerism as trigger of thyroid autoimmunity. Eur J Endocrinol 2006; 39:45-154.
  58. Bauer M, Weger W, Orescovic I, Hiebaum E- M, Benedicic C, Lang U, et al. Fetal microchimerism is not involved in the pathogenesis of lichen sclerosus of the vulva. Prenatal Diagnosis 2006, 26(2): 175–178
  59. Gammill HS, Guthrie K A, Aydelotte TM, Adams Waldorf KM, Nelson JL. Effect of parity on fetal and maternal microchimerism: interaction of grafts within a host? BLOOD 2010; 116(15): 2706-2712.
  60. Steinkraus HB, Rothfuss H, Jones JA, Dissen EShefferly E, Lewis RV. The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. J. Anim. Sci. 2012; 90:481–488.
  61. Nguyen Huu S, Oster M, Avril MF, Boitier F, Mortier L, Richard MA, et al. Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Path 2009; 174:630– 637.
  62. Johnson KL, Samura O, Nelson JL, McDonnell WM, Bianchi DW. Significant fetal microchimerism in a nontransfused woman with hepatitis C: evidence of long-term survival and expansion. Hepatology 2002; 36: 1295–1297.
  63. Sawicki J A. Fetal Microchimerism and Cancer .Cancer Res 2008; 68:9567-9569.
  64. Cha DH, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson CL. Cervical cancer and microchimerism. Obstet Gynecol 2003; 102:774–781.
  65. Gadi VK, Nelson GL. Fetal microchimerism in women with breast cancer. Cancer Res 2007; 67:9035–9038.
  66. Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, et al. Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer2009; 124:1054–1059.
  67. Gadi VK. Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res Treat 2010; 121:241–244.
  68. Cirello V, Recalcati MP, Muzza M, Rossi S, Perrino M, Vicentini L, et al. Fetal microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res 2008; 68:8482–8488.
  69. Cirello V, Perrino M, Colombo C, Muzza M, Filopanti M, Vicentini L, et al. Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int. J. Cancer 2010; 126: 2874–2878.
  70. Gilmore GL, Haq B, Shadduck RK, Jasthy SL, Lister J. Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol 2008; 36:1073–1077.
  71. Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case control study of fetal microchimerism and breast cancer. PloS ONE 2008; 3:1–5.
  72. O’Donoghue K, Sultan HA, Al-Allaf FA, Anderson JR, Wyatt-Ashmead J, Fisk NM .Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod Biomed Online 2008; 16:382–390.
  73. Whiteman DC, Siskind V, Purdie DM, Green AC. Timing of pregnancy and the risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2003; 12: 42–46.
  74. Cirello V, Perrino M, Colombo C, Muzza M, Filopanti M, Vicentini L, et al. Fetal microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int J Cancer 2010; 126:2874–2878.
  75. Kallenbach LR, Johnson KL, Bianchi DW. Fetal microchimerism and Cancer: A Nexus of Reproduction, Immunology and Tumor Biology. Cancer Res 2011; 71(1): 8–12.
  76. Bianchi DW. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg 2007; 42:12–18.
  77. Ryder M, Ghossein RA, Ricarte-Filho JC, Knauf JA, Fagin JA. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer 2008; 15:1069–1074.
  78. Dubernard G, Aractingi S, Oster M, Rouzier R, Mathieu MC, Uzan S, et al. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res 2008; 10:R14.
  79. Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, et al. Increased fetal microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer2009; 124:1054–1059.
  80. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98:2396–2402.
  81. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106:1525–1531.
  82. Parant O, Dubernard G, Challier JC, Oster M, Uzan S, Aractingi S, et al .CD34 cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Lab Invest 2009; 89:915-923.
  83. Chan J, O Donoghue K, Gavina M, Torrente Y, Kennea N, Mehmet H, et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 2006; 24:1879–1891.
  84. Kennea N, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL, et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 2009; 8:1069–1079.
  85. Khosrotehrani K, Leduc M, Bachy V, Nguyen Huu S, Oster M, Abbas A, et al. Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J Immunol 2008; 180:889 –897.
  86. Adams Waldorf KM, Gammill HS, Lucas J, Aydelotte TM, Leisenring WM, Lambert NC, et al. Dynamic changes in fetal microchimerism in maternal peripheral blood mononuclear cells, CD4and CD8cells in normal pregnancy. Placenta 2010; 31:589–594.
  87. Sunku Cuddapah CS, Gadi VK, de Laval de Lacoste B, Guthrie KA, Nelson JL. Maternal and fetal microchimerism in granulocytes. Chimerism 2010; 1:11–14.
  88. Santos MA, O’Donoghue K, Wyatt-Ashmead J, Fisk NM. Fetal cells in the maternal appendix: a marker of inflammation or fetal tissue repair? Hum Reprod 2008; 23:2319–2325.
  89. Nguyen Huu S, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci USA 2007; 104:1871–1876.
  90. Nguyen Huu S, Khosrotehrani K, Oster M, Moguelet P, Espie´ M-J, Aractingi S. Early phase of maternal skin carcinogenesis recruits long term engrafted fetal cells. Int J Cancer 2008; 123:2512–2517.
  91. Nelson JL. Microchimerism: expanding new horizon in human health or incidental remnant of pregnancy? Lancet 2001; 358:2011–2012.
  92. Lee ESM, Bou-Gharios G, Seppanen E, Khosrotehrani K, Fisk NM. Fetal stem cell microchimerism: natural-born healers or killers? Molecular Human Reproduction2010; 16(11):869–878.
  93. Bryan JN. Fetal microchimerism in cancer protection and promotion: current understanding in dogs and the implications for human health. AAPS J 2015; 17(3): 506-512.
  94. Chan WFN, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL. Male Microchimerism in the Human Female Brain. PLOS ONE 2012; 7 (9): e45592.
  95. Reda SY, Martins ML. The differential diagnosis of inflammatory joint disease in maternal-fetal microchimerism. J Bras Patol Med Lab 2013; 49(6):406-409.
  96. Eun JK, Guthrie KA, Zirpoli3 G, Gadi VK. In Situ Breast Cancer and Microchimerism. Sci Rep. 2013; 3: 2192.
  97. Florim GMS, Caldas HC, de Melo JCR, Baptista MA-SF, Fernandes I-MM, Savoldi-Barbosa M, et al. Fetal microchimerism in kidney biopsies of lupus nephritis patients may be associated with a beneficial effect. Florim et al. Arthritis Research & Therapy 2015; 17:101-106.
  98. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 2008; 233:901–913.
  99. Portmann-Lanz C, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecolo 2006; 194:664–673.
  100. Weiss M, Troyer D. Stem cells in the umbilical cord. Stem Cell Rev Rep 2006; 2:155–162.
  101. Parolini O, Soncini M, Evangelista M, Schmidt D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med 2009; 4:275–291.
  102. Castrechini NM, Murthi P, Gude NM, Erwich JJHM, Gronthos S, Zannettino A, et al. Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta 2010; 31:203–212.