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Introduction 
 

With the earlier functional and structural 

neuroimaging techniques including the quantitative 

electroencephalography (qEEG), magneto 

encephalography (MEG) and animal lesion  studies, 

following areas have been implicated in tinnitus: the 

peripheral auditory system, the thalamus (reticular, 

medial geniculate and dorsal nuclei), auditory 

cortex, the limbic system (anterior cingulate cortex, 

amygdala), brainstem (raphe nucleus), subcallosal 

and paralimbic areas which include basal ganglia  

 

 

 

 

 

(ventral palladium), striatum (nucleus accumbens) 

and ventromedial prefrontal cortex (1-3) . Figure1 

provides a schematic overview of the tinnitus-

involved network through integrating data from 

SPECT, PET, fMRI and MEG studies in tinnitus.  
 
 

The current review addresses tinnitus structural 

and functional brain network connectivity which 

may provide insights into a testable tinnitus 

framework and signal/information flows.  

Abstract 

Our knowledge about subjective tinnitus physiopathology has improved in the last 

decades, while information to understand the main mechanisms that transform a 

neutral phantom sound to tinnitus distress appear to be inadequate. The current 

review presents evidence from several studies using neuroimaging, electrophysiology 

and brain lesion techniques aiming at hypothesizing a new realistic multimodality 

tinnitus framework which can better explain the structural and functional brain 

connectivity in different stages of tinnitus development. Further to the present work, a 

full review of the entire literature should be prompted to discuss evidence to more 

comprehensively investigate the relationship between structural and functional 

connectivity of tinnitus. Progresses in such framework will shed lights to the tinnitus 

neurofunctional model and further evidence-based treatment modalities. 
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Some additional structural/functional data are 

discussed below. 
  

Thalamic regions 
 

The Thalamic Reticular nucleus (TRN) is located 

between the thalamus and cortex regions. TRN 

receives excitatory inputs from all cerebral cortices 

and their associated thalamic nuclei and sends 

inhibitory projections particularly to the thalamus 

(4). TRN is connected with a particular dorsal 

thalamic nucleus (4). It is also partitioned into seven 

different sectors considered to be independently 

involved with specific sensorial processing (4). Five 

sections are sensory (auditory, gustatory, 

somatosensory, visceral and visual), one is motor 

and the last is the Limbic (4). TRN is also associated 

with the visual area and its lesion alters the 

orientation of attention (5, 6). Considering its 

association with the dorsal thalamus and the 

prefrontal cortex (PFC), TRN receives excitatory 

inputs from the PFC and sends inhibitory projections 

to the dorsal thalamus (7). A mapping study of 

sensorial responses on TRN showed that some of 

its cells correspond to multimodal sensory neurons 

(8). Moreover, it has been shown that TRN mediates 

cross modal effects of visual stimulation on auditory 

response in the MGB (9). It has further been 

demonstrated that some auditory cells in the TRN, 

project to the somatosensory and not to the auditory 

thalamic nuclei (10). These findings suggest the 

participation of the TRN cross-modal sensorial 

processing via the loop-connectivity between the 

cortex and the thalamus. 

 

 TRN is involved in sensory gating (11), attentional 

modulation (12, 13) and is also responsible for the 

generation of sleep spindles (14).TRN affects the 

activity in the dorsomedial (DM) thalamus. Lesions 

of TRN may influence the activity of the dorsomedial 

thalamus neurons through two possible pathways. 

One is the loss of the inhibitory input from the TRN 

due to excitatory neurons of the DM thalamus. The 

second is where PFC-NAc-VP pathway enhances the 

inhibitory action on DM thalamus by decreasing the 

excitatory pathway of the PFC to the neurons of NAc. 

This action reduces the inhibitory function of the 

NAc to the excitatory neurons of the ventral 

palladium (VP), resulting in an inhibition of the DM 

thalamus (15-18). Therefore, lesion to TRN results 

in a dysfunctional control of the DM thalamus (13) 

where TRN receives projections from the PFC (13) 

and retains bidirectional connectivity with the dorsal 

thalamus (7). 

The PFC-TRN circuit can enhance the motivation 

of dominant stimuli and also establish pathways to 

the cortex and enhance the motivation of reticular 

neurons to forcefully suppress distractors (7). The 

PFC-MD thalamus pathway, which maps via the 

same TRN prefrontal pathways, strengthen 

transmissions of relevant signal and wean those of 

distractors, ”lateral inhibition” (7). 

 The auditory component of TRN has a gating role 

in the control of auditory stimuli that are relayed 

from the thalamus to cortex (19). The gating TRN 

involvement in cross-modal sensory processing for 

attention has been demonstrated. Evidence 

suggest that the cortical afferents from the 

temporal cortex, which enclose the primary and 

anterior auditory regions, topographically coincide 

with thalamic afferents from the ventromedial 

division of the medial geniculate nucleus at the 

auditory TRN (19). 

 

Recently, a robust pathway from the amygdala to 

the TRN was discovered, which had only been 

exhibited in humans (20). It was shown that 

networks originated from the basal nuclei and the 

cortical nuclei of the amygdala, follow different 

paths within the thalamus, while subjected to 

coincidental terminal distributions in TRN. The 

majority of the fibers of both networks excite the 

amygdala anteriorly and localize dorsally toward the 

inferior thalamus peduncle or the external capsule 

and mainly enter the thalamus anteriorly (20). 

External stimuli with emotion values are transferred 

by the sensorial systems to the cortex. The POFC 

and the amygdala receive inputs from higher-order 

association cortices (21). Both areas project to the 

TRN via sensorial cortices and their thalamic nuclei 

(7). Thus, the POFC and amygdala are found as 

optimal spots to direct attention to affective 

external stimuli through the posterior TRN. 
 

The auditory cortex 
 

Despite the prior empirical evidences, it was 

shown that the abnormal activity in auditory system 

can generate tinnitus (22). Animal studies 

demonstrated an enhancement of spontaneous 

and sound-evoked neuronal activity at several 

regions of the auditory pathways. However, whether 

the observed abnormal activity is related to tinnitus 

or hyperacusis (which is coinsidental with tinnitus in 

most cases) remains as an open discussion (23). 

According to the intrinsic technique of fMRI, it is not 

feasible to detect the absolute blood oxygenation, 

while relative blood oxygenation between conditions 

can be compared (24, 25).  
 

The influences of the top-down attention 

modulation on related neural activity whas been 

detected as approximated tinnitus effect in auditory 

cortex hyperactivity (26).  
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Limbic system  
 

The limbic system’s involvement in tinnitus 

pathology is demonstrated in several studies, 

however, its specific role remains uncertain (27-47).  

Rauschecker (2010) proposed that the 

corticostriatal circuit can cause the chronic tinnitus 

resulting in the disturbance leading to permanent 

eruption of the gain control of the phantom sound 

perception as chronic tinnitus (3, 37). Furthermore, 

the corticostriatal network eruption has been 

illustrated in evaluation of reward, emotion, 

cognition and aversion in other domains (27-32).  

The vmPFC and the nucleus accumbens (NAc) are 

components of the cortico-striatal thalamic circuit, 

whereby vmPFC sends excitatory projections to the 

NAc (48-50). Studies have shown a reduction in gray 

matter of the vmPFC in tinnitus patients against the 

control group representing a reduced neural activity 

output (51). On the other hand, the enhancement 

noted in the NAc activity can represent disinhibition 

of NAc by reducing vmPFC input to local inhibitory 

interneurons (51). 

 

The amygdala 
 

The Amygdala can be classified into lateral, basal, 

central and medial nucleus and interacted 

inhibitory cells. The lateral amygdala plays a 

sensory gateway role and receives neuronal inputs 

originated from the thalamic and cortical areas, 

hence associated with several sensory functions 

(auditory, visual, somatosensory, gustatory and 

olfactory) (52). The basal amygdala receives inputs 

from polymodal memory and high-level cognitive 

association cortices. Internally, information flows 

from the lateral and basal nucleus directly to the 

central nucleus and indirectly via the inhibitory 

central nucleus. The lateral nucleus of the amygdala 

receives direct neuronal input from the auditory 

thalamus (medial geniculate body) as well as the 

auditory cortex (52, 53). Output from the central 

nucleus is related to numerous autonomous 

functions. Excitatory projections from the thalamus 

to the hypothalamus stimulate the sympathetic 

nervous system to release corticosteroid hormone 

via the hypothalamic-pituitary gland, modulating the 

arousal and stress state. It has also been revealed 

the projections from basal amygdala are related to 

memory (hippocampus) and high-level cognition 

(prefrontal and associative cortices)(54). 

In addition, amygdala processes emotions (55, 

56) like fear and anger (57, 58) and drives external 

sensorial stimuli to behavioral and autonomic 

responses. The Amygdala detects the relevant 

stimuli (59, 60), bottom-up attention processes (61-

63), anticipatory and arousal reactions (64, 65) and 

plays a vital role in motivation and decision-making 

(61, 66). The stimuli evaluation and motivation 

processing are more related to the basolateral and 

central nucleus, respectively (67). In conjunction, 

their association to cognition (56, 68, 69) influence 

decision-making and behavior. Furthermore, 

amygdala plays a role in fear-related classical 

conditioning (70, 71). Anatomical evidence shows 

the lateral convergence of the auditory thalamus, 

auditory cortex, somatosensory thalamus and 

associative cortices (72). Lesion studies have 

demonstrated that the medial geniculate body and 

the adjacent posterior intralaminar nucleus are 

important for association of the two stimuli and 

long-term potentiation (72). Lesion to the rat’s 

amygdala showed impaired responses to acoustic 

stimuli (73) . The amygdala responses to sensory 

stimuli are not always accompanied by conscious or 

even an awake state (74). Sensory evaluation 

during sleep is a useful feature for surviving 

dangerous conditions (75) and EEG and fMRI 

studies showed that sound presented during NREM 

sleep phase could decrease the amygdala 

sensitivity to other stimuli, possibly as a sleep 

protective mechanism (76). The amygdala also 

responds to music (77, 78). Neuroimaging 

techniques in humans have exhibited that music is 

processed in several areas of brain related to 

emotional processing, including the amygdala (77). 

The amygdala responds to pleasant and unpleasant 

music and even unexpected musical events (79). 

Rodent studies have demonstrated that fear- 

conditioning can activate the amygdala and may 

improve tonotopic map plasticity in the auditory 

cortex. The receptive fields for frequencies of 

unconditioned stimuli were enhanced by co-activity 

of the basal forebrain and auditory cortex (80-83). It 

was also demonstrated that stimulation of the 

lateral amygdala can inhibit the primary auditory 

cortex response to sound by means of GABA 

receptors (84). Additionally, amygdala neurons 

project directly to the inferior colliculus, which 

modulates emotion processing and plays a role as 

a thalamo-cortical feedback at a low-level of the 

ascending auditory pathway (85). 

 

 

The hippocampus 
 

The hippocampus receives sensory auditory input 

directly or indirectly from auditory association 

cortices via the para-hippocampal cortex, the 

perirhinal cortex and other forebrain areas including 

the medial frontal cortex, insula, and amygdala (86, 

87). The auditory association cortex receives inputs 
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from the hippocampus via parahippocampal and 

perirhinal cortices (88). 

The hippocampus is associated with explicit and 

declarative memory (89, 90) and also episodic 

memory, while the right hippocampus is specifically 

associated with spatial memory (91). The dorsal 

hippocampus participates in primary cognitive 

information processes, while the ventral 

hippocampus is involved in emotional tasks for 

memory and learning. The amygdala can modulate 

hippocampal memory; the hippocampus formed 

memory can modulates amygdala response to 

emotional stimuli (92, 93). The amygdala 

contribution to hippocampus increases emotional 

value of the stimuli, which in turn facilitates 

hippocampal memory-consolidation (94). Moreover, 

amygdala and hippocampus collaboration can 

contribute to long-term consolidation of emotional 

events (95). The main function of the hippocampal 

auditory component is the formation of long-term 

memories. Music memory retrieval activates mainly 

the right, but not left hippocampus hemisphere 

(96). The hippocampus is also involved in emotional 

music processing.  Functional-MRI studies have 

shown that the activity of the right hippocampus 

and amygdala are enhanced upon listening to sad, 

but not neutral or pleasant music (97). Additionally, 

there is evidence supporting that hearing-loss is 

linked with degeneration in the hippocampus (98). 

Given such observations, and despite 

hippocampus’ role in normal auditory system 

illustrated in Figure 1, it is suggested  that 

hippocampus can play a role in a particular type of 

tinnitus which involves emotional processes such 

as sound-blast, which has not covered in our 

proposed neurofunctional model. 

 

Prefrontal Cortex 
 

The prefrontal cortex (PFC) is thought to 

participate in high-level control of behavior 

generation (99). PFC is highly interconnected with 

the brain, including extensive connections with 

cortical, subcortical and brainstem sites (100). The 

dorsal prefrontal cortex is especially interconnected 

with brain regions involved in attention, cognition 

and action, while the ventral prefrontal cortex 

interconnects with brain regions involved in emotion 

(101). PFC receives excitatory inputs (102, 103) 

from the hippocampus, basolateral amygdala (BLA), 

nucleus accumbens (NAc) and other limbic cortices 

by means of intracortical projections (104, 105). 

The BLA and hippocampal have control over the PFC 

cells (106, 107). Synapses from the hippocampus 

to the PFC are able to change and articulate several 

types of plasticity in cognitive processes (108, 109). 

One of the most recent relevant fMRI studies, 

using a voxel-based morphometry analysis, showed 

gray matter reduction of subcallosal regions (37), 

particularly in the vmPFC in tinnitus sufferer (110, 

111). Furthermore, a MEG study in tinnitus patients 

showed that vmPFC activity is positively correlated 

with resting-state cortical networks, however results 

were not duplicated in control subjects (51). It was 

shown that in tinnitus subjects, medial prefrontal 

cortex activity was vigorously altered by activity in 

other regions of the brain, and weakly influenced 

activity in other brain regions(26). It  also 

demonstrated functional differences in the vmPFC 

between tinnitus patients and a control group. The 

study observed a positive correlation between BOLD 

responses in the vmPFC and psychoacoustic 

tinnitus parameters, such as loudness and 

duration.  

 
Figure 1. Auditory midbrain/ brainstem, and Amygdala divisions and 

connections in auditory system. The lateral Amygdala receives neuronal 

input from auditory thalamus (medial geniculate nucleus) and auditory 

cortex (primarily association areas) The basal Amygdala projects to inferior 

colliculus to generate an amygdalar-auditory feedback loop; B, basal 

Amygdala; C, central Amygdala; CN, cochlear nucleus; IC, inferior 

colliculus; L, lateral Amygdala; MGN, medial geniculate nucleus; SOC, 

superior olivary complex. Modified from (54). 

 

 

Other variables related to tinnitus, including 

tinnitus handicap inventory scores, hearing loss, 

noise sensitivity, anxiety and depression showed 

weak or no correlations with the BOLD signal (26). 

The observed activity in the vmPFC represents an 

effort to suppress the perceived sound to be able to 

perform the required experimental task. The 

positive correlation  of  the  vmPFC  activity  with  
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psychoacoustic parameters is an indication that this 

neural activity shows specific relation with 

conscious awareness (26). 

The particular projection observed in the 

dorsolateral prefrontal cortex (dlPFC), posterior 

orbitofrontal cortex (pOFC), vmPFC as part of pOFC, 

and their associated mediodorsal thalamic nucleus 

(MD) depicts a crucial role in cognition, emotion and 

memory (20) in addition to tasks such as intrusive 

thoughts and emotions (113). These findings would 

therefore suggest that LPFC performs an important 

role in cognitive evaluation, which is a finding in 

agreement with top-down attention regulation 

processes.  
 

The subcallosal area and 

paralimbic system 
 

Thalamus reticular nucleus and dorsal thalamus 

are triggered by the serotonergic neurons which 

receive projects from DRN, nucleus accumbens and 

paralimbic area (18, 114). GABAergic neurons of 

TRN are stimulated by serotonin (115, 116) which 

results in inhibition of thalamic relay in sensory 

sectors (117). The TRN inhibition may shift between 

tonic and burst firing mode of the thalamo-cortical 

relay (118, 119). 

Leaver et al (2011) proposed that the NAc 

hyperactivity enhances appraisal of the phantom 

sound perception. The vmPFC also projects to the 

TRN, manifesting its auditory distribution (13), 

which inhibits communication between the auditory 

cortex and medial geniculate nucleus (MGN). 

Therefore, deficient vmPFC output could further 

inhibit the phantom sound at the MGN (110). Based 

on the evidence, patients with better preserved gray 

matter in the vmPFC had less hyperactivity in NAc 

and mHG, suggesting that the vmPFC is able to 

apply inhibitory influence on the auditory system 

(110). It was suggested that dysregulation of the 

limbic and auditory networks may be at the heart of 

chronic tinnitus (110). Rauschecker et al proposed 

a noise cancelling mechanism involvement based 

on the studies which found notable subcallosal 

volume loss in tinnitus patients (37, 42). 

Subcallosal  activation correlates at varying degrees 

with the unpleasant effects of dissonant music (28) 

and is altered by the perception and expectation of 

pain (120). Moreover, abnormal activity levels in the 

subcallosal area are observed in certain depressive 

disorders patients (121, 122). Additionally, the 

posterior portion of subcallosal area is projected to 

the NAc, which is an important component of the 

ventral striatum (123, 124). The ventral striatum 

has strong interconnectivity with subcallosal area 

(125, 126). NAc has a critical role in reward 

behavior and avoidance learning by means of 

dopaminergic pathways (127) and plays a 

regulatory role in several emotion-related systems 

via serotonergic neurons (128). 

Between 20 to 40% of the patients who suffered 

noise-induced hearing loss also developed chronic 

tinnitus (129). Moreover, patients with somatic 

tinnitus are capable of modulating the loudness and 

pitch of the phantom sound by movements of the 

eyes, neck or jaw (130). Indicative alteration will 

happen in tinnitus level  for instance secondary to 

sleep deprivation or stress (131-133). The phantom 

sound might completely disappear for one day or 

more and then return as loud as before. This 

intermittent perception could reflects the 

perception suppression actions of inhibitory  gating  

mechanisms (3). 

 

Aberrant tinnitus-related plasticity 

in the auditory and limbic systems 
 

Three types of experimental brain plasticity are 

observed in conjunction with tinnitus. 

First is alterations in the level of spontaneous 

neural activity in the central auditory system (134, 

135) such as noise exposure and ototoxic drugs 

modulation (136) which could lead to changes in 

spontaneous activity in different auditory brain 

areas. Noise exposure of any kind reduces 

spontaneous firing rate of the eighth cranial nerve 

which terminates in magnifying spontaneous firing 

rate at several level of auditory brain cortex (137, 

138). 

Next, changes in temporal pattern of spontaneous 

neural activity could modulate more 

synchronization of activities across auditory 

neurons (135, 139). In general, changes can occur 

via external auditory sound stimulation so 

differences in neural synchrony may also be 

perceived as a tinnitus. Burst-firing and neural 

synchrony could materialize in tinnitus patients 

(137, 139). Apparently, peripheral hearing-loss 

reduces the afferent inputs to brainstem which in 

turn contributes to changes in neural activity of the 

central auditory system thereby causing tinnitus. 

Finally, reorganization of tonotopic maps can also 

cause tinnitus (139-141). These readjustments 

may not directly correspond to tinnitus, while they 

can influence abnormal neural activity such as 

cortical reorganization, which can cause over-

description of frequencies at the edge of peripheral 

hearing-loss (141, 142). 

Tinnitus studies have demonstrated that auditory 

thalamus projection to the  amygdala  may generate 

an emotional reflex to the phantom sound (54). 

Experimentally-induced tinnitus established the 
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correlation between the auditory cortex and 

amygdala activation (41). Tinnitus is related with 

gray matter deficiency in auditory system (inferior 

colliculus), in hippocampus which regulates tinnitus 

pathophysiology (42, 43) and in subcallosal region 

including nucleus accumbens, which is connected 

with amygdala and emotion (37). The dorsal 

cochlear nucleus is over-activated in the presence 

of tinnitus (44). Furthermore, tinnitus may alter 

attention and emotion via affecting the locus 

coeruleus, the reticular formation and the raphe 

nuclei (33, 143). Activities observed in many types 

of tinnitus indicate the significant roles of amygdala 

and hippocampus (45) along with parabrachial 

nucleus and insula (144). Developing a learning 

mechanisms which creates awareness of the 

phantom-sound and involves the role of a distress 

network consisting of anterior cingulate cortex, 

anterior insula and amygdala has been proposed 

(46). Similar to the externally-induced noises, 

internally-generated tinnitus can cause emotional 

distress resulting in mood disorders such as 

depression. Stress or depression may further 

induce tinnitus (145). There is also evidence that 

pathways including the limbic system may apply to 

noise cancellation mechanisms. A feedback 

network from amygdala to the auditory system can 

suppress the tinnitus signal at a subcortical level 

before it reaches the auditory cortex and induces 

conscious perception (47). Amygdala neurons 

project to the nucleus accumbens, consequently 

connect to inhibitory neurons in thalamic reticular 

nucleus, which synapse on ascending neurons in 

medial geniculate body via lateral inhibition 

mechanism, preventing signal to reach auditory 

cortex. Limbic system and associated areas play an 

important role in tinnitus generation/suppression 

and can be vital in future tinnitus treatments. 

Treatment procedure of cognitive level may need to 

shift the attention away from undesired phantom 

sound (146).  

 

Concluding remarks 
 

The knowledge of structural and functional brain 

network connectivity is necessary and yet 

insufficient to project tinnitus development 

frameworks. Exploring the exact role of bottom-up 

and top-down cognitive processes is essential for 

arriving at a realistic tinnitus model. Furthermore, 

investigating the relation between tinnitus and 

prevalent related comorbidities may lead to better 

insights into the tinnitus functional network. 

Eventually, projecting novel animal and clinical 

models can make distinction between different 

paradigms and improve our perception about 

tinnitus, its pathophysiological underpinnings and 

evidence-base treatment modalities.   
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