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Introduction 
 

Electrochemical sensors/biosensors are 

powerful devices aimed at providing selective and 

sensitive determination of biologically active 

compounds (1-6). These devices can offer 

advantages such as easy miniaturization, low 

detection limit, wide linear response range, good 

stability and need to small analyte volumes. 

 

 

 

 

 

DNA sequencing is an important area of molecular 

biology and clinical studies. The detection of 

specific gene sequences in human, viral and 

bacterial nucleic acids is important in some areas 

such as clinical diagnosis and identification of 

genetic mutations. In this context, electrochemical 

sensors/biosensors are useful.  

Abstract 

A multi-walled carbon nanotube modified paste electrode (MWCN-PE) 

was used for determination of promethazine (PMZ) in drug 

formulations and blood plasma by cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV) methods. Results revealed that 

the MWCN-PE shows an electrocatalytic activity toward the anodic 

oxidation of PMZ by a marked enhancement in the current response in 

buffered solution at pH 5.0.  At the MWCN/CPE, the anodic peak 

potential of PMZ was shifted by 28.0 mV to more negative potential in 

comparison with bare carbon paste electrode. The detection limit for 

this method was 0.025 µmol L-1. Results indicated that the modified 

electrode could be employed for the determination of promethazine 

hydrochloride in pharmaceutical formulations and plasma samples. 

Abbreviations: BHT-Butylated hydroxytoluene; TEAC-trolox-

equivalent antioxidant capacity; AUC-area under the curve 
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DNA-based biosensors have attracted extensive 

attention in recent years. The importance of these 

biosensors is due to their wide range of 

applications, from diagnosis of many human 

diseases to determination of pathogenicity of 

diseases (7-11). Diagnosis of genetic diseases is 

very important in health preventive care (7, 8). 

Prevention and treatment of human disease 

requires realistic, effective and low-cost design of 

genomic sequence determination tools and this has 

many usages in gene expression monitoring, 

pharmacogenetic researches, drug discovery, 

clinical diagnosis, gene analysis, virus and bacteria 

determination, bioterrorism factors determination, 

biological wars and crime investigations (10). 

Genetic mutation diagnosis in the molecular level 

will provide reliable diagnosis of diseases before 

clinical signs manifestation. In addition, in relation 

to diagnosis of microbial pathogen agents, 

determination methods based on nucleic acids are 

more sensitive and specific than immune reaction-

based methods (12). In addition, it is recommended 

to employ new direct and sensitive methods in 

bacterial diagnosis and explanation, instead of 

hard, harmful and time-consuming isolation and 

culture methods (13, 14). In order to achieve these 

broad goals, different methods of gene sequencing 

in live organisms and other complex samples were 

developed (9-11, 15-18). Molecular diagnosis 

based on gene sequence analysis have provided 

very sensitive and precise methods to diagnose 

pathogens and genetic changes. Conventional 

methods of analysis of certain gene sequence are 

based on direct sequencing or DNA hybridization. 

DNA hybridization methods are simpler than 

direct sequencing methods. In DNA hybridization 

method, the target gene sequence is identified by a 

probe DNA that can complete the double stranded 

structure. This method is very efficient and specific 

and can recognize the target gene in a complex 

matrix containing different noncomplementary 

nucleic acids. Probe DNA is a single stranded DNA 

(ssDNA) containing a radioactive, light absorbing, 

light emitting or electrochemical active agent that 

can reveal the hybridization (19), because nucleic 

acids rarely produce distinguishable signals (9, 20). 

The signal transducer element will reveal the target 

DNA capture by the probe DNA via producing a 

recordable signal. One of the major research fields 

in DNA-based biosensors is developing these signal 

transducer elements. Although several DNA 

microarray technologies were developed, this way is 

going to be so dynamic by researches in order to 

save costs, simplify more, make more variety, and 

increase sensitivity and specificity.  

There usually exists a problem that the amount 

of DNA to be recognized is less than the detection 

limit of current tools (at the femtomolar (fM) or 

attomolar (aM) level). Therefore, the transducer 

signal must be amplified. In some cases, PCR 

method is used beside these methods (14, 21, 22). 

DNA detection methods based on hybridization 

can be divided into two groups of homogenous and 

heterogeneous methods. In the homogeneous 

method, both probe and target are in solution 

phase, while in the heterogeneous method, the 

probe DNA is immobilized on a solid surface. In 

homogenous method, different optical (23-26) or 

electrochemical (27, 28) methods are employed to 

reveal the hybridization. The disadvantage of 

homogenous method is impossibility of continuous 

monitoring and making the system miniaturized. 

Genosensors and DNA chips based on 

heterogeneous methods can solve these problems. 

Therefore, immobilization of probe DNA is one of the 

important stages in the fabrication of genosensors. 

 

    Immobilization of the probe DNA  
 

The first step in genosensor development is the 

immobilization of probe DNA that is the most 

important stage of a genosensors fabrication. 

General methods of probe immobilization include 

surface adsorption, covalent immobilization and 

avidin (streptavidin)-biotin interaction (29). 

 

   Surface adsorption 
 

This route is one of the simplest ways of probe 

immobilization. This method relies on electrostatic 

interactions between the negatively charged DNA 

and positive charges on a surface. For example, 

chitosan was employed as a cationic biopolymer for 

DNA immobilization (30, 31). Similarly, a mixture of 

polyalkylamin and polystyrene sulfonate was used 

in DNA immobilization (32). In addition, physical 

adsorption of DNA on the surface of screen-printed 

carbon (33), pyrolytic graphite (34), gold (35), and 

glassy carbon (36) were reported to fabricate 

electrochemical genosensors. 

 

Covalent immobilization 
 

In one of covalent immobilization methods, the 

interaction between thiol functional group and the 
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gold metal is employed (37-40). A chemical reaction 

(covalent bond formation) between amine group of 

5’ end of probe DNA, and the carboxylic group via 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide is 

also employed for probe immobilization (41-44). 

The probe can be immobilized on the surface of 

conducting polymers via this reaction (45, 46-48). 

Of course, the immobilization of DNA on the surface 

of conducting polymers is not performed only via 

this reaction; direct coupling between amine and 

carboxylic groups can be done (49-51). In this 

regard, polypyrrole (52-59), polyaniline, poly 

diaminobenzene and poly (3-4-methylenedioxy 

thiophen) (60, 61) were used. Also, self-assemble 

monolayer formation was used for covalent 

immobilization of DNA (62). Other methods of DNA 

covalent immobilization include immobilization by 

glutaraldehyde on the surface of atomic force 

microscopy (AFM) probe (63), immobilization on the 

surface of mercaptosilane-modified glass (64), and 

use of aniline derivatives (65-67). 

 

 

Immobilization via avidin-biotin 

interaction 
 

Avidin and streptavidin are tetrameric proteins 

that have four binding sites for biotin. In order to 

immobilize the probe DNA, avidin is attached to a 

surface and then biotinylated DNA is immobilized on 

the surface (68-72). 

Some advantages and disadvantages of 

different immobilization methods are presented in 

Table 1. 

 

 

Table 1. Advantages and disadvantage of immobilization methods. 

 

seDatnavdasiD stnavdasiD Immobilization method 

Poor operation stability, 

Frequently reversible, 

Immobilization affected by 

different parameters (such as 

temperature, ionic strength and 

pH), The possibility of 

denaturation, Aggregation of 

biomolecules and reduces the 

activity, Desorption possibility 

Simple, Cheap, Effective, Simple 

equipment and handling, Easily 

implement in industrial processes 

Surface adsorption 

eesetedm tb fetytiiigii, Low 

activity recovery  

Eextraordinary stable immobilization, 

Better control on the immobilization 

procedure, Over ligand density, Better 

biomolecules orientation, 

Spatial patterning, Providing accuracy 

and reproducibility 

Covalent 

Relatively expensive Strong interaction, Possibility of in-

situ immobilization, Easily renewable 

Avidin-biotin binding 

    Electrochemical genosensors 
 

In electrochemical genosensors, hybridization 

can directly be converted to an electrical signal (45, 

73, 74). Therefore, the complexities and difficulties 

of signal conversion are reduced, and signal 

detection with electrochemical devices will be easily 

possible. Electrochemical signal transducers are 

more sensitive and compatible with smaller sizes. 

These transducers can be enzymes, ferrocene and 

electroreactive species interacting with DNA. Also, 

some electrochemical genosensors act in the label-

free fashion. 

 

Enzymatic labels 
 

In this route, the probe DNA or its 

complementary target is labeled with an enzyme. In 

a genosensor, a proxidase label was used that 

changed o-phenylenediamine to 2-2-di-

aminobanzene (75). The later compound is a 

17 
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chromophore and also an electroreactive species. 

In another study, a 26-mer sequence of ssDNA was 

detected using impedance spectroscopy (76). For 

this purpose, a thiolated oligonucleotide was 

immobilized on the surface of gold, and 

hybridization of a biotinylated target DNA provided 

a sandwich-like structure. Then, the obtained 

double strand structure reacted with a HRP-

containing avidin. The resulting complex could 

catalyze the oxidation of 4-chloro-1-naphthol by 

hydrogen peroxide and resulted in an electron 

transfer interface. In other study, HRP-labeled 

liposome was used similarly (77). A nylon 

membrane-modified by target DNA was used in 

other works (78-81) and the target DNA was 

collected with a signal transducer on the surface of 

a graphite-epoxy composite. In all cases, the 

hybridization process was monitored by 

electrochemical methods through labeling with a 

HRP-streptavidin conjugate in the presence of 

hydrogen peroxide and hydroquinone. In another 

genosensor, cationic redox polymers containing 

osmium-bipyridine complex were coated on the 

electrode surfaces (47). The complex acted as an 

electron transfer mediator. After immobilization of 

the probe DNA, a HRP-labeled target DNA was 

hybridized, and the resulting complex could catalyze 

the reduction of hydrogen peroxide. These 

complexes would provide the electrical contact 

between peroxidase center and the electrode. This 

method was also used to detect the presence of a 

single base mismatch in an 18-mer oligonucleotide 

(82) so that a soy heat resistant peroxidase was 

used. Other copolymer of 4-mini pyridine and 

acrylamide with complexes of osmium bipyridine 

was also employed (83). Glucose oxidase was also 

used as an enzyme label. A redox cationic polymer 

containing osmium-bipyridine complex that can 

conjugate with glucose oxidase was synthesized 

(84). This redox polymer reacted with glucose 

oxidase after probe immobilization and hybridized 

with labeled target. In the presence of glucose, the 

generated current was measured. Other enzymes 

used to fabricate genosensors include alkaline 

phosphatase (30,31,85), glucose-6-phosphate 

dehydrogenase (32) and bilirubin oxidase (86). 

 

Labels interacting with DNA 

- Groove binders 
One of these labels is bipyridine-ruthenium 

complex that oxidizes guanine through a catalytic 

reaction. Therefore, this label reveals the presence 

of guanine (33,87). Similar complexes of cobalt with 

bipyridine or phenanthroline can be used as labels 

which also bind to double stranded DNA (dsDNA) 

selectively and reversibly. These complexes bind to 

the minor groove of dsDNA. Also, complexes of 

cadmium with pyridine-benzamide derivatives were 

used to study to bind to DNA (34). Hoechst (Figure 

1) is a compound that binds to the minor groove of 

DNA which is rich in adenine/thymine. This binds to 

DNA and its oxidation current is relevant to the 

hybridization degree (35,36). This compound was 

used in 32-channel array (88-90) and DNA chips 

(91) fabrication. 

 

 

Figure 1: Chemical structure of Hoechst.

      

 

 

 

 

 

 

18 



                      Journal of Advanced Medical Sciences and Applied Technologies (JAMSAT). 2015; 1(1) 

- DNA intercalators 
 

Anthracycline antibiotics like daunomycine and 

doxorubicin are currently used in cancer treatment. 

Details of daunomycine interaction with DNA were 

studied (92-95). This drug intercalates into the 

dsDNA and has more affinity to guanine/cytosine 

base pairs and is one of the best compounds to 

develop genosensors. The probe DNA can be 

attached to the surface of carbon electrode and its 

hybridization with target DNA can be followed by 

different electrochemical methods (96). Also, the 

probe can be thiolated and adsorbed at the surface 

of gold and hybridization can be similarly followed 

(97). Detection limit of this method was 10-11 M. 

Doxorubicin is also a special intercalator (98, 99). 

This drug was also used to detect DNA with 27 base 

pair (100). Probe DNA immobilization with avidin-

biotin interaction and hybridization detection by 

doxorubicin lead to electrochemical detection of 

mutation in neuroblastoma. 

The electrochemical behavior of other 

interchalators, such as azo dyes, acridine, ethidium 

bromide, anthracyclinas, tetracyclines and bis-

benzamides was also studied (4-101). 

Anthraquinone derivatives, such as 2,6-

anthraquinone disulfonic acid, were also used and 

electron transfer to these labels performed through 

a long pathway (102). Ethidium bromide, as a redox 

intercalator, can detect DNA at 10-10 M level (103). 

Extensive studies were performed on the methylene 

blue-DNA interaction (104, 105, 112, 113). This 

compound has more affinity to intercalate to ssDNA, 

than dsDNA. This is due to its high affinity to bind 

with guanine base. Therefore, upon ssDNA 

hybridization, the current decreases in the 

voltammograms of methylene blue (106, 107). In 

the study of intercalation of labels to DNA, carbon 

nanotubes (41), glassy carbon (4) and gold (108-

112) electrodes were employed. Using methylene 

blue, the DNA of hepatitis type B virus was detected 

(107). Proflavine (3,6-diaminoacridine) is also a 

positive-charge intercalator with no electroreactivity 

(114). However, after hybridization and binding to 

DNA, the ssDNA negative is neutralized. Therefore, 

the hybridization can be followed using an 

electrochemical active species with a negative 

charge such as ferrocyanide ions. When ssDNA 

exists on an electrode surface, ferrocyanide ions 

show weak currents due to repulsive forces. After 

hybridization, proflavine intercalates into dsDNA 

and neutralizes its negative charge. Now 

ferrocyanide ions can approach the surface and 

generate current proportional to hybridization 

degree. This method could detect DNA up to 10-14 

M (114). 

 

 

- DNA labeling with metal 

nanoparticles 
    In most genosensors made with metal 

nanoparticles, gold (115-117) and silver (118) 

nanoparticles were used. DNA was immobilized on 

a carbon surface and then hybridized with gold 

nanoparticles-labeled target DNA (119). This 

genosensor was used to detect mutation in factor V 

of leiden. The electrochemical signal of gold 

nanoparticles can be measured after their 

dissolution (120). These nanoparticles can be 

dissolved through reaction with 

bromine/bromhidric acid mixture and converted to 

gold ions. These ions were then concentrated 

through electrochemical reduction and their 

amounts were measured (121). In order to increase 

sensitivity, gold nanoparticles can be covered with 

silver after DNA hybridization. This process was 

performed through chemical or electrochemical 

reductions. After that, silver was measured (68-

71,122-125) or hybridization was assessed by 

measuring the electrical conduction (72). 

Gold nanoparticles were used to label polymeric 

beads. In these cases, target DNA labeled with gold 

nanoparticles were hybridized with the probe DNA 

immobilized on the surface of magnetic beads 

(126). After that, gold nanoparticles can be 

quantified. 

Iron-containing nanoparticles were employed to 

detect DNA hybridization (127).  In a method, the 

core/shell nanoparticles containing iron core and 

gold shell were used. The biotinylated target 

hybridized with a probe labeled with iron-gold 

nanoparticles on the surface of polystyrene beads 

covered with streptavidin. In another method, 

commercial magnetic beads containing iron were 

employed. The immobilized probe DNA hybridized 

with magnetic beads-labeled target DNA. Then, the 

iron-containing nanoparticles were dissolved and 

the amount of iron was measured. 

In Table 2, Application of some DNA labels and 

their electrochemical measurement techniques are 

presented. 
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Table 2. Some DNA labels and their electrochemical measurement techniques. HRP: Horseradish peroxidase, 

DPV: Differential pulse voltammetry, IS: Impedance spectroscopy, Amp: Amperometry, CV: Cyclic voltammetry, 

LSV: Linear sweep voltammetry, ASV: Anodic stripping voltammetry 

 

DNA label Techniques Applications Reference 

HRP DPV Detection of human cytomegalovirus genome 75 

HRP IS Detection of Tay-Sachs genetic disorder 76, 77 

HRP Amp Detection of DNA hybridization 78 

HRP IS Detection of staphylococcus aureus genome 79 

Glucose oxidase Amp Detection of Escherichia coli genome 84 

Alkaline phosphatase DPV Food-contaminating pathogenic bacteria genomes 85 

Glucose-6-phosphate 

dehydrogenase 

Amp InvA gene of Salmonella typhimurium 32 

Bilirubin oxidase DPV Detection of DNA hybridization 86 

Bipyridine-ruthenium 

complex 

CV Detection of the 3 Ras genes in humans (HRAS, 

KRAS and NRAS) 

33, 87 

Hoechst LSV Detection of v-myc oncogene 35 

Daunomycine CV Detection of yAL3 gene 97 

2,6-Anthraquinone 

disulfonic acid 

DPV, CV Detection of single-base mismatch 102 

Ethidium bromide CV Detection of 24-mer deoxyribonucleic acid 103 

Methylene blue CV, DPV Detection of hepatitis B virus genome 107 

Silver nanoparticles ASV, IS Detection of DNA hybridization 118 

Gold nanoparticles CV, DPV Detection of Factor V Leiden mutation 119 

- Labeling of probe or target DNA 

and detection of hybridization 
 

The methods that use labels have some 

drawbacks such as plenty of noise in the 

background. This is due to the non-specific binding 

of redox labels to the electrode or DNA. In order to 

overcome this problem, the redox label can be 

attached to a DNA sequence (signal producing 

DNA). Of course, the disadvantage of this method is 

the risk of DNA demolition or its mixing with the 

label. The target DNA acts as a molecular bridge 

between probe DNA (that is attached to the surface 

of an electrode), and the signal producing DNA 

(128-132). Therefore, two processes of 

20 
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hybridization occur during the function of this type 

of genosensor. A schematic design of this type of 

genosensor is shown in Figure 2. In order to 

fabricate such a genosensor, a ssDNA modified 

electrode is made and 6-mercapto 1-hexanol 

molecule is immobilized between the probe strands 

to prevent non-specific adsorption of probe DNA. 

Then, the target is hybridized with the probe and 

then this complex is hybridized with signal 

producing DNA. The label attached to the signal 

producing DNA can be an enzyme or a nanoparticle.  

Figure 2. Conjugation of a redox label with target DNA. 

 

In a research, immobilization of probe DNA was 

performed by an avidin bridge, and a HRP labeled-

signal producing DNA was employed. The detection 

limit was 10-13 M (128). In another study (130), gold 

nanoparticles modified with streptavidin was used 

as a label and then attached to a probe DNA 

through biotin. Then, gold nanoparticles were 

dissolved and their concentration was determined. 

 

Changes in DNA structure during hybridization 

and double strand formation can be used to 

fabricate genosensors. In this case, one end of 

probe DNA is attached to a label and the probe goes 

away from electrode surface after hybridization. 

This process is shown in Figure 3 (131,132). Using 

this method, DNA at 10-9 M in blood serum was 

detected (133). 

  Figure 3. Changes in DNA structure followed by hybridization and formation of double stranded structure
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Design of unlabeled genosensors 

Field effect genosensors 

 

Because DNA is naturally charged, it can be 

used in field effect transistors. Attachment of DNA 

to an interface will change the potential of semi-

conductive gap. This change is a result of charge 

variation at the interface or redistribution of charges 

in the inter-molecular space due to the DNA 

adsorption (134). Different interfaces, such as 

silicon nitride (135), diamond (52) and carbon 

nanotubes (129) were used to fabricate these 

genosensors. 

 

Electrochemical genosensor-

Electrochemical inherent properties 

of DNA-Direct oxidation of DNA 

bases 
Early studies on electrochemistry of DNA were 

based on guanine oxidation on the surface of 

mercury drop electrode (53), and the first method of 

DNA detection was its direct oxidation at the surface 

of mercury drop electrode (53). During the oxidation 

process, guanine and rarely adenine are oxidized 

and this is closely relevant to DNA spiral structure. 

Advantages of this method are simplicity and no 

need to any modification or manipulation of DNA 

(54). One of the disadvantages of this method is 

irreversible oxidation of DNA bases that leads to  

 

 

 

longevity decrement of the genosensor. In most of 

these genosensors, oxidation current of guanine 

continuously increases because the total surface 

concentration of guanine is increased upon 

hybridization. Therefore, this is a major drawback of 

this method. To overcome this problem, inosine was 

replaced with guanine in the probe DNA (55, 56). 

Inosin forms a base pair with cytosine and any 

generated signal will be a result of guanine 

oxidation directly from hybridization (57-60). In 

another method, guanine oxidation process was 

performed via an indirect catalytic reaction through 

transition metal complexes (not directly at the 

electrode surface) (61,136,137). 

 

Electrochemical genosensors 

based on conducting polymer 

transduction-Impedance 

measurement 
Electronically conducting polymers are organic 

polymers that have electrical properties like metals. 

These polymers have special electronic structures, 

electrical conduction, low ionizing potential and 

high electronegativity. The most prominent and 

famous of these polymers are polyaniline, 

poly(phenyl vinylene), polypyrrole and 

polythiophene (Figure 4). 

 

 

 

 

Figure 4. The chemical structure of some conductive polymers. 

 

These polymers can be dopped by ions and have 

self-concentrating motivations (polarons, 

bipolarons and solitons) that cause their electrical 

conduction. Immobilization of probe DNA on the 

surface of polymer is performed through 

entrapping, covalent binding or 

electrostatic/hydrophobic attractions.   

 

For entrapment, the polymer is synthesized from 

its monomer in the presence of probe DNA. This also 

causes the probe DNA (as an anion) to be doped in 

the polymer. In covalent immobilization, the probe 
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DNA is usually functionalized by amine or acid 

functional groups and then attached to the polymer 

surface. Avidin-biotin conjugation can also be used. 

Since the electrical properties of conductive 

polymers depend on its structure, dopping level and 

its surface interactions, electrical measurements on 

these polymers can produce relevant signal upon 

hybridization. Therefore, electrochemical 

impedance spectroscopy will be the most common 

tool in hybridization detection and genosensors 

response recording based on conductive polymers. 

A study showed that the impedance spectra of 

oligonucleotide-functionalized polypyrrole had a 

significant difference before and after hybridization 

with complementary oligonucleotide (45). Similar 

differences were observed in copolymer of poly(1,3-

acetic acid pyrrole) and poly(3-N-

hydroxyphthalimide pyrrole) (138). A genosensor 

based on polyaniline was presented (139) and its 

function is illustrated in Figure 5. To fabricate this 

genosensor, avidin was attached to the surface of 

polyaniline. Then, probe DNA that was attached to 

biotin at its 5’ end, was immobilized at the surface 

of polymer. In order to obtain hybridization signal, 

direct oxidation of guanine and methylene blue 

were used. Using this genosensor, a detection 

concentration at 2 fM was obtained. 

 

Figure 5. A scheme for an ultrasensitive genoensor based on polyaniline. 

 

Electrochemical genosensor 

based on electrochemical 

properties of nanostructured 

materials 

      
      Unique physicochemical properties of 

nanostructured materials have led to widespread 

applications of these materials in genosensor 

fabrication. 

 

Polymeric nanoparticles 
 

Some genosensors were fabricated from 

conducting polymeric nanoparticles possessing 

high electrical conductivity, good processability, low 

ionizing potential and great stability (140). The most 

important factors influencing electrochemical 

properties of these genosensors are signal 

transduction, thickness and shape, which are well 

controlled through polymer sizing. Poly (indole-6- 

 

 

carboxylic acid) nanostructure was synthesized for 

a non-labeled genosensor with picomolar (pM) level  

detection-limit (141). Another genosensor was 

designed based on polyaniline nanostructure (142) 

that can detect neisseria gonorrhoea in the 

presence of neisseria meningitides and E.coli. An 

arrangement of polyaniline nanotubes provided 

electron transfer channels to DNA active sites and 

provided a detection limit of fM (143). 

 

Metallic nanomaterials 
 

Metallic nanomaterials show size, surface and 

catalytic effects related to their small dimensions. 

These nanomaterials were used in genosensor 

fabrication as immobilizing surface for probe DNA, 

signal amplification or as labels. Noble metal 

nanoparticles such as palladium, platinum, gold 

and silver were more used in this area (68, 72, 130, 

144). For example, platinum nanoparticles 

deposited on the surface of glassy carbon were 
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used to detect soy DNA (145). Other nanomaterials 

were also employed together with metal 

nanomaterials. For example, platinum 

nanoparticles and carbon nanotubes, placed in 

Nafion polymer, were used to fabricate genosensors 

and can detect 10-11 M DNA (146). A similar study 

reported using palladium nanoparticles (147). 

Among metals, gold nanoparticles the most use in 

genosensors fabrication. Different strategies for 

using gold nanoparticles in genosensor fabrication 

are illustrated in Figure 6. These strategies include: 

a) the use of gold nanoparticles as a label, and then 

their dissolution and determination of the resultant 

gold ions, b) direct determination of the amount of 

gold nanoparticles, c) using silver accompanied by  

 

 

 

 

conductometric detection, d) improving gold 

nanoparticles surface with silver, e) using gold 

nanoparticles as carriers of other nanoparticles, or 

f) other electrochemical labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Strategies for using gold nanoparticles in genosensor fabrication. 

 

 

In a study, gold nanoparticles were labeled on 

DNA and employed to fabricate a genosensor with a 

detection limit at aM level (148). In another study, a 

co-polymer of 2,6 pyridine and carboxylic acid was 

firstly synthesized on the surface of carbon and 

then, a layer of gold nanoparticles was covered on 

the polymer (149). The probe DNA was then fixed on  

 

the surface of gold, and methylene blue was 

employed as the indicator of hybridization. Catalytic 

effect of gold nanoparticles and biological 

compatibility of the polymer are both effective in 

performance of this genosensor. In another work, 

gold nanoparticles were formed at the surface of  

carbon electrode and then a mixture of 

polycystamine/polyglutamic acid was covered on it 
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(150). The probe DNA was immobilized on the 

resultant surface. 

Other methods of probe DNA immobilization 

consisted of layer-by-layer covalent binding of gold 

nanoparticles and thiol-functionalized carbon 

nanotubes on the surface of gold electrode (151). 

In this genosensor, carbon nanotubes provided 

electron-conducting matrix, and gold nanoparticles 

had the role of a catalyst. A gold nanoparticles 

surface was covered with polyamidoamine and 3-

mercaptopropionic acid for the DNA immobilization 

(152). Rutenium-amin complex was used as the  

hybridization indicator and 10-14 M DNA 

concentration was detected. 

 

Metal oxide nanomaterials 
 

Metal oxide semiconductors have been used in 

designing and developing biosensors as a new class 

of advanced materials (153-158). Cerium 

oxide/chitosan nanocomposite was employed for 

probe DNA immobilization and further detection of 

colon cancer gene (159). Due to the presence of 

chitosan, the nanocomposite had a high 

biocompatibility. Methylene blue was used in this 

genosensor and a detection limit at 10-11 M level 

was obtained. Cerium oxide was also used in 

fabrication of other genosensors with carbon 

nanotubes and the ionic liquid of (1-butyl 3-

methylimidazolium hexafluoro phosphate). This 

genosensor was used in detecting pyruvate 

carboxylase gene (160). Zirconia was applied as a 

thin film on the surface of gold to attach a probe 

DNA through its end phosphate group (161). 

Methylene blue was the hybridization indicator. 

Zirconia (together with carbon nanotubes and 

chitosan) was the main component of another 

genosensor (161). Probe DNA was also immobilized 

on the surface of zinc oxide with a detection limit at 

10-11 M level (162). In order to immobilize zinc 

oxide, biopolymers (162) or sol-gel method (163) 

were employed. Hollow microspheres of copper (I) 

oxide was employed to immobilize a probe DNA to 

detect hepatitis B virus (164). 

 

Conclusion and outlook 
This review described the utilization of 

nanostructured materials for fabrication of 

electrochemical genosensors. The electrochemical 

genosensors, as powerful detection devices, have 

the potential to significantly impact the diagnosis of 

diseases, such as cancers and genetic disorders. 

Nanostructured materials became important 

components in genosensing devices since they 

clearly improve the performance of these 

instruments. Furthermore, the application of 

different nanomaterials to increase the efficiency of 

electrochemical genosensors is a well-accepted 

strategy. Although many improvements are required 

in reproducibility and sensitivity, there is no doubt 

that a growing number of nanomaterial-based 

electrochemical genosensors will soon be offered 

for the diagnosis of diseases and monitoring 

following therapy. 
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