Demystifying the Biophoton-Induced Cellular Growth: A Simple Model

Document Type : Hypothesis

Author

Conscioustronics Foundation, Shiraz, Iran Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Background: None-Chemical Distant Cellular Interactions (NCDCI) are among the unexplained issues in cell biology. One example of such interactions is the biophoton-induced growth. In this process, photon emissions from one cell can induce mitosis in other cells while they are chemically separated. This effect is evident among many species. Hypothesis: It is hypothesized that some simple but universal molecular pathways, which include photoreceptor proteins, modulators of cell cycle and circadian rhythm, can explain this phenomenon. Particularly, existing experimental data has been used to support the hypothesis that exposure of cellular structures to visible light photons deactivates the cryptochrome protein and this deactivation disinhibits cell growth. This disinhibition happens through the influx of Ca2+ cations and subsequent activation of the downstream mitogenic pathways. Conclusion: While the existing lines of evidence are mixed and equivocal, current hypothesis provides a testable framework for further experimental investigation. The present model and its predictions can be used as a well-documented platform to address the mechanisms of None-Chemical Distant Cellular Interactions in biological systems.

Keywords


  1. K A. G. Gurwitsch, Arch Entw Mech Org 1923; 100 (1):11-40
  2. F. Grass a, H. Klima B, S. Kasper. Biophotons, microtubules and CNS, is our brain a “Holographic computer”? Med Hypotheses 2004; 62: 169–172
  3. Boveris, Alberto, et al. "Organ chemiluminescence: noninvasive assay for oxidative radical reactions." Proc Natl Acad Sci U S A 77.1, 1980: 347- 351.
  4. Ursini, Fulvio; Barsacchi, Renata; Pelosi, Gualtiero; Benassi, Antonio. Oxidative stress in the rat heart, studies on low-level chemiluminescence. J Biolumin Chemilumin 1989; 4 (1): 241–244.
  5. Y. Isojima, T. Isoshima, K. Nagai, K. Kikuchi, H. Nakagawa, Ultraweak biochemiluminescence detected from rat hippocampal slices, NeuroReport, 1995; 6: 658-660
  6. M, Kobayashi, M, Takeda, K, Ito, H, Kato, H. Inaba, Two-dimensional photon counting imaging and spatiotemporal characterization of ultra-weak photon emission from a rat’s brain in vivo, J Neurosci Methods 93 (1999) 163-168.
  7. M. Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. Ito, H. Kato, H. Inaba, In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress, Neurosci Res, 1999; 34:103-113.
  8. Michel H, Christian T, Bernard G. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. Trends Plant Sci, 2006; 11: 480–484
  9. Joon-Ho K, Tae-Shik K, Daewoong J, Hoon-Sik L, Sang-Hyuu P, Park, S. H. Effect of dehydration stress on delayed luminescence in plant leaves. J Korean Phys Soc, 2008; 52: 132–136
  10. Musumeci F, Scordino A, Triglia A, Blandino G, Milazzo I. Intercellular communication during yeast cell growth. Europhys Lett, 1999; 47: 736–742
  11. Shen, Xun, W. Mei, and Xun Xu. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia, 1994; 50(10): 963-968
  12. Albrecht-Buehler G. Rudimentary form of cellular" vision". Proc Natl Acad Sci U S A 1992; 89(17): 8288-8292.
  13. FELS, D. Cellular Communication through Light. PLOS ONE,2009; 4: e5086.
  14. Cifra, Michal, Jeremy Z. Fields, Farhadi A. Electromagnetic cellular interactions. PROG BIOPHYS MOL BIO, 2011: 105(3): 223-246
  15. Galantsev, V. P. Lipid peroxidation, low-level chemiluminescence and regulation of secretion in the mammary gland. Experientia, 1993; 49(10): 870-875
  16. Nikolaev, Yu A. Role of distant interactions in the regulation of the adhesion of pseudomonas fluorescens cells. Microbiology 2000; 69(3): 291-295
  17. Trushin, M. V. Culture-to-culture physical interactions causes the alteration in red and infrared light stimulation of Escherichia coli growth rate. J Microbiol Immunol Infect 2003; 36(2): 149-152
  18. Jaffe, Lionel F. Marine plants may polarize remote Fucus eggs via luminescence. Biol Bull 2004; 207(2): 160-160 19. Zhang, JianBao, and XiaoJun Zhang. Communication between osteoblasts stimulated by electromagnetic fields." Chinese Sci Bull 2007; 52(1): 98-100
  19. Darwin C. The power of movement in plants. Da Capo Press 1881, New York
  20. Conlan, MJ., Rapley, J.W., and Cobb, C.M. Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodentol, 1996; 23: 492–496
  21. Ahmad, Margaret, Anthony R. Cashmore. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature,1993: 162-166
  22. Huala, E., P. W. Oeller, E. Liscum, I. S. Han, E. Larsen and W. R. Briggs Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 1997; 278: 2120–2123
  23. Iseki, M., S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori and M. Watanabe. A blue-light-activated adenylyl cyclase mediates photo- avoidance in Euglena gracilis. Nature, 2002; 415: 1047–1051
  24. Ahmad, M. and A. R. Cashmore. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photo- receptor. Nature 1993; 366: 162–166
  25. Vitaterna, Martha Hotz. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2." Proc Natl Acad Sci USA, 1999: 96(21): 12114-12119
  26. Van Der Horst, Gijsbertus TJ. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 1999; 398(6728): 627-630
  27. Borgs, Laurence. Cell “circadian” cycle. Cell Cycle 2009; 8(6): 832-837
  28. Zhang, Eric E. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Med, 2010; 16(10): 1152-1156
  29. Narasimamurthy, Rajesh. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA, 2012; 109(31):12662-12667
  30. Naidoo N, Song W, Hunter-Ensor M, Sehgal A. A role for the proteasome in the light response of the timeless clock protein. Science, 1999; 285:1737–1741
  31. VanVickle-Chavez SJ, Van Gelder RN. Action spectrum of Drosophila crypto-chrome. J Biol Chem 2007; 282:10561–10566
  32. Busza, Ania. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 2004; 304(5676): 1503-1506
  33. Froehlich, A. C., Chen, C. H., Belden, W. J., Madeti, C., Roenneberg, T., Merrow, M., Dunlap, J. C. (2010). Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell, 9(5), 738-750.
  34. Öztürk, N. Structure and function of animal cryptochromes. Cold Spring Harbor Symposia on Quantitative Biology. Vol. 72. Cold Spring Harbor Laboratory Press, 2007
  35. Hitomi, Kenichi. Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res, 2000; 28(12): 2353-2362
  36. Su, Andrew I. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA, 2004; 101(16): 6062-6067
  37. Stoelzle, Sonja. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA, 2003; 100(3): 1456-1461
  38. Gekakis, Nicholas. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280 (5369): 1564-1569drug Setarud on cerebral ischemia in male rats. Neural regeneration research. 2012;7(27):2085-91.