Iron-Reducing Bacteria and Iron Nanostructures

Document Type : Review Article

Authors

Fasa University of Medical Sciences

Abstract

Iron Reducing Bacteria (IRB) are one of the most applicable microorganisms in various industrial and environmental activities. These bacteria play a main role in the natural iron transformation. They act in a reverse metabolic pathway in contrast to iron oxidizing bacteria. In the anaerobic conditions IRB are capable to use ferric ion as the final electron acceptor and reduce Fe3+ to Fe2+. What makes these bacteria interesting in bionanotechnology is that IRB are able to synthesize iron nanostructures. In this mini review we have a quick look on the diversity, metabolism, and cultivation of IRB. Finally, we discuss iron nano structures which biosynthesized by IRB.

Keywords


  1. Starkey RL, Halvorson HO. Studies on the transformations of iron in nature Ii, Concerning the importance of microörganisms in the solution and precipitation of iron. Soil Science. 1927; 24(6):381–402. doi: 10.1097/00010694-192712000-00001
  2. Hedrich S, Schlomann M, Johnson DB. The iron-oxidizing proteobacteria. Microbiology. 2011; 157(6):1551–64. doi: 10.1099/mic.0.045344-0
  3. Erbs M, Spain J. Microbial iron metabolism in natural environments. Microb Divers. 2002; 1-19.
  4. Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, et al. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME Journal. 2012; 7(2):338–50. doi: 10.1038/ismej.2012.103
  5. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology. 2006; 72(12):7919–21. doi: 10.1128/aem.01602-06
  6. Straub KL, Buchholz-Cleven B. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. International Journal of Systematic and Evolutionary Microbiology. 2001; 51(5):1805–8. doi: 10.1099/00207713-51-5-1805
  7. Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution. 2010; 158(5):1733–40. doi: 10.1016/j.envpol.2009.11.020
  8. Baldi F, Marchetto D, Battistel D, Daniele S, Faleri C, De Castro C, et al. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage. Journal of Applied Microbiology. 2009; 107(4):1241–50. doi: 10.1111/j.1365-2672.2009.04302.x
  9. Baldi F, Marchetto D, Paganelli S, Piccolo O. Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations. New Biotechnology. 2011; 29(1):74–8. doi: 10.1016/j.nbt.2011.04.012
  10. Baldi F, Minacci A, Pepi M, Scozzafava A. Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiology Ecology. 2001; 36(2-3):169–74. doi: 10.1111/j.1574-6941.2001.tb00837.x
  11. Ivanov V, Stabnikov V, Zhuang WQ, Tay JH, Tay STL. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. Journal of Applied Microbiology. 2005; 98(5):1152–61. doi: 10.1111/j.1365-2672.2005.02567.x
  12. Lovley DR, Stolz JF, Nord GL, Phillips EJP. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 1987; 330(6145):252–4. doi: 10.1038/330252a0
  13. Ottow JCG, Glathe H. Isolation and identification of iron-reducing bacteria from gley soils. Soil Biology and Biochemistry. 1971; 3(1):43–55. doi: 10.1016/0038-0717(71)90030-7
  14. Fredrickson JK, Gorby YA. Environmental processes mediated by iron-reducing bacteria. Current Opinion in Biotechnology. 1996; 7(3):287–94. doi: 10.1016/s0958-1669(96)80032-2
  15. Wielinga B, Mizuba MM, Hansel CM, Fendorf S. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology. 2001; 35(3):522–7. doi: 10.1021/es001457b
  16. Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology. 1988; 54(6):1472-80. PMCID: PMC202682
  17. Laverman AM, Blum JS, Schaefer JK, Phillips E, Lovley DR, Oremland RS. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology. 1995; 61(10):3556-61. PMCID: PMC1388705
  18. Chapelle FH, Lovley DR. Competitive exclusion of sulfate reduction by Fe(lll)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Ground Water. 1992; 30(1):29–36. doi: 10.1111/j.1745-6584.1992.tb00808.x
  19. Kianpour S, Ebrahiminezhad A, Mohkam M, Tamaddon AM, Dehshahri A, Heidari R, et al. Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. Journal of Basic Microbiology. 2016; 57(2):132–40. doi: 10.1002/jobm.201600417
  20. Beller HR, Grbić-Galić D, Reinhard M. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Applied and Environmental Microbiology. 1992; 58(3):786-93. PMCID: PMC195335
  21. Straub KL, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology. 1996; 62(4):1458-60. PMCID: PMC1388836
  22. Bott M. Anaerobic citrate metabolism and its regulation in enterobacteria. Archives of Microbiology. 1997; 167(2-3):78–88. doi: 10.1007/s002030050419
  23. Bosch J, Heister K, Hofmann T, Meckenstock RU. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Applied and Environmental Microbiology. 2009; 76(1):184–9. doi: 10.1128/aem.00417-09
  24. Ebrahimi N, Rasoul-Amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H. Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: Synthesized using three different reducing agents. Acta Metallurgica Sinica. 2016; 29(4):326–34. doi: 10.1007/s40195-016-0399-9
  25. Ebrahimi N, Rasoul-Amini S, Niazi A, Erfani N, Moghadam A, Ebrahiminezhad A, et al. Cytotoxic and apoptotic effects of three types of silver-iron oxide binary hybrid nanoparticles. Current Pharmaceutical Biotechnology. 2016; 17(12):1049–57. doi: 10.2174/1389201017666160907143807
  26. Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y. Synthesis, characterization and anti-listeria monocytogenes effect of Amino-Acid coated magnetite nanoparticles. Current Nanoscience. 2012; 8(6):868–74. doi: 10.2174/157341312803989178
  27. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Impact of Amino-Acid coating on the synthesis and characteristics of Iron-Oxide Nanoparticles (IONs). Bulletin of the Korean Chemical Society. 2012; 33(12):3957–62. doi: 10.5012/bkcs.2012.33.12.3957
  28. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids and Surfaces B: Biointerfaces. 2013; 102:534–9. doi: 10.1016/j.colsurfb.2012.08.046
  29. Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y. Impacts of iron oxide nanoparticles on the invasion power of listeria monocytogenes. Current Nanoscience. 2014; 10(3):382–8. doi: 10.2174/15734137113096660109
  30. Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Current Nanoscience. 2014; 11(1):113–9. doi: 10.2174/1573413710666140911224743
  31. Ebrahiminezhad A, Varma V, Yang S, Berenjian A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Applied Microbiology and Biotechnology. 2015; 100(1):173–80. doi: 10.1007/s00253-015-6977-3
  32. Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A. Synthesis and application of amine functionalized iron oxide nanoparticles on Menaquinone-7 fermentation: A step towards process intensification. Nanomaterials. 2015; 6(1):1-9. doi: 10.3390/nano6010001
  33. Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials. 2015; 2015:1–9. doi: 10.1155/2015/451405
  34. Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology. 2017; 1–15. doi: 10.1080/1040841x.2016.1267708
  35. Duan J, Song L, Zhan J. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Research. 2009; 2(1):61–8. doi: 10.1007/s12274-009-9004-0
  36. Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7(1):015018. doi: 10.1088/2043-6262/7/1/015018
  37. Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chemical Industry and Chemical Engineering Quarterly. 2017; 23(1):31–7. doi: 10.2298/ciceq150824002e
  38. Ebrahiminezhad A, Ghasemi Y, Berenjian A. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnology. 2016; 10(3):120–3. doi: 10.1049/iet-nbt.2015.0072
  39. Ebrahiminezhad A, Najafipour S, Kouhpayeh A, Berenjian A, Rasoul-Amini S, Ghasemi Y. Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids and Surfaces B: Biointerfaces. 2014; 118:249–53. doi: 10.1016/j.colsurfb.2014.03.052
  40. Ebrahiminezhad A, Taghizadeh S, Berenjian A, Naeini FH, Ghasemi Y. Green synthesis of silver nanoparticles capped with natural carbohydrates using ephedra intermedia. Nanoscience & Nanotechnology-Asia. 2017; 7(1):104–12. doi: 10.2174/2210681206666161006165643
  41. Ebrahiminezhad A, Taghizadeh S, Berenjian A, Rahi A, Ghasemi Y. Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using zataria multiflora. Advanced Materials Letters. 2016; 7(11):939–44. doi: 10.5185/amlett.2016.6458
  42. Ebrahiminezhad A, Raee MJ, Manafi Z, Sotoodeh Jahromi A, Ghasemi Y. Ancient and novel forms of silver in medicine and biomedicine. Journal of Advanced Medical Sciences and Applied Technologies. 2016; 2(1):122. doi: 10.18869/nrip.jamsat.2.1.122
  43. White AF, Brantley SL. Reviews in minerology. Volume 31: Chemical weathering rates of silicate minerals. New York: Mineralogical Society of America; 1995.
  44. Waychunas GA, Kim CS, Banfield JF. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research. 2005; 7(4-5):409–33. doi: 10.1007/s11051-005-6931-x
  45. Dehner CA, Barton L, Maurice PA, DuBois JL. Size-Dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium. Environmental Science & Technology. 2011; 45(3):977–83. doi: 10.1021/es102922j
  46. Yan B, Wrenn BA, Basak S, Biswas P, Giammar DE. Microbial reduction of Fe(III) in hematite nanoparticles by geobacter sulfurreducens. Environmental Science & Technology. 2008; 42(17):6526–31. doi: 10.1021/es800620f
  47. Gallo G, Baldi F, Renzone G, Gallo M, Cordaro A, Scaloni A, et al. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microbial Cell Factories. 2012; 11(1):152. doi: 10.1186/1475-2859-11-152