Possible Molecular Mechanisms for Paramecium Learning

Document Type : Hypothesis

Authors

1 Conscioustronics Foundation, Shiraz, Iran Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

2 School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Parasitology,School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Learning is a cornerstone of intelligent behavior in animals. This behavior has been mostly studied in organisms with a fairly complex nervous system. However, recent reports of learning in unicellular organisms suggested the existence of associative learning in unicellular organisms. In particular, the capability to associate different light intensities with cathodal stimulation in paramecium is of special interest. We have investigated the previous reports on this phenomenon and proposed a molecular mechanism for learning behavior in paramecium. Specifically, we have used the existing evolutionary evidence in order to find the possible molecular pathways that may play a role in Paramecium’s learning. Moreover, previous studies have been reviewed in order to propose new experiments that can verify the plausibility of the present hypothesis

Keywords


  1. Bear MF, Connors BW, Paradiso MA. Neuroscience. Philadelphia: Lippincott Williams & Wilkins; 2007.
  2. Wood DC. Habituation in stentor: Produced by mechanoreceptor channel modification. Journal of Neuroscience. 1988; 8(7):2254-8. PMID: 3249223
  3. Rayport SG, Schacher S. Synaptic plasticity in vitro: Cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. Journal of Neuroscience. 1986; 6(3):759-63. PMID: 3958793
  4. Mutschler I, Wieckhorst B, Speck O, Schulze-Bonhage A, Hennig J, Seifritz E, et al. Time scales of auditory habituation in the amygdala and cerebral cortex. Cerebral Cortex. 2010; 20(11):2531–9. doi: 10.1093/cercor/bhq001
  5. Rosburg T, Zimmerer K, Huonker R. Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Experimental Brain Research. 2010; 205(4):559–70. doi: 10.1007/s00221-010-2391-3
  6. Hudspeth AJ, Jessell TM, Kandel ER, Schwartz JH, Siegelbaum SA. Principles of neural science. Amsterdam: Elsevier; 2013.
  7. Nakagaki T, Yamada H, Toth Á. Intelligence: Maze-solving by an amoeboid organism. Nature. 2000; 407(6803):470. doi: 10.1038/35035159
  8. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T. Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society B: Biological Sciences. 2004; 271(1554):2305–10. doi: 10.1098/rspb.2004.2856
  9. Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae anticipate periodic events. Physical Review Letters. 2008; 100(1). doi: 10.1103/physrevlett.100.018101
  10. Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Benard M, et al. The physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biology and Evolution. 2015; 8(1):109–25. doi: 10.1093/gbe/evv237
  11. Armus HL, Montgomery AR, Jellison JL. Discrimination learning in paramecia (P. caudatum). The Psychological Record. 2006; 56(4):489-98.
  12. Day LM, Bentley M. A note on learning in paramecium. Journal of Animal Behavior. 1911; 1(1):67–73. doi: 10.1037/h0071290
  13. French JW. Trial and error learning in paramecium. Journal of Experimental Psychology. 1940; 26(6):609–13. doi: 10.1037/h0059015
  14. Hanzel TE, Rucker W. Escape training in paramecia. Journal of Biological Psychology; 1971.
  15. Huber JC, Rucker WB, McDiarmid CG. Retention of escape training and activity changes in single paramecia. Journal of Comparative and Physiological Psychology. 1974; 86(2):258–66. doi: 10.1037/h0035957
  16. Applewhite PB, Gardner FT. Tube-escape behavior of paramecia. Behavioral Biology. 1973; 9(2):245–50. doi: 10.1016/s0091-6773(73)80159-2
  17. Hinkle DJ, Wood DC. Is tube-escape learning by protozoa associative learning. Behavioral Neuroscience. 1994; 108(1):94–9. doi: 10.1037/0735-7044.108.1.94
  18. Gelber B. Investigations of the behavior of paramecium aurelia: I. Modification of behavior after training with reinforcement. Journal of Comparative and Physiological Psychology. 1952; 45(1):58–65. doi: 10.1037/h0063093
  19. Jensen DD. More on “Learning” in Paramecia. Science. 1957; 126(3287):1341–2. doi: 10.1126/science.126.3287.1341
  20. Mingee CM. Retention of a brightness discrimination task in Paramecia (P. caudatum). International Journal of Comparative Psychology. 2013; 26(3):202-12.
  21. Verduyckt M, Vignaud H, Bynens T, Van den Brande J, Franssens V, Cullin C, et al. Yeast as a model for Alzheimer’s disease: Latest studies and advanced strategies. Methods in Molecular Biology. 2016; 197–215. doi: 10.1007/978-1-4939-2627-5_11
  22. Moosavi B, Mousavi B, Macreadie IG. Yeast model of Amyloid-β and Tau aggregation in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2015; 47(1):9–16. doi: 10.3233/jad-150173
  23. Hameroff S, Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation. 1996; 40(3-4):453–80. doi: 10.1016/0378-4754(96)80476-9
  24. Hameroff S, Penrose R. Consciousness in the universe. Physics of Life Reviews. 2014; 11(1):39–78. doi: 10.1016/j.plrev.2013.08.002
  25. Hameroff SR. Did consciousness cause the Cambrian evolutionary explosion. In S Hameroff, A Kaszniak, A Scott (Eds.) Toward a science of consciousness II: The second Tucson discussions and debates. Cambridge: MIT Press; 1998.
  26. Dorvash M, Hatam Gh, Yeganeh Y, Alipour A. A replication study on paramecium learning. Paper presented at: 3rd Congress of Basic and Clinical Neuroscience. 29-31 October 2014; Tehran, Iran. doi: 10.13140/RG.2.1.1912.3920
  27. Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochemistry and Photobiology. 1976; 23(3):201–4. doi: 10.1111/j.1751-1097.1976.tb07242.
  28. Shen X, Mei W, Xu X. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia. 1994; 50(10):963–8. doi: 10.1007/bf01923488
  29. Fels D. Cellular communication through light. PLoS ONE. 2009; 4(4):5086. doi: 10.1371/journal.pone.0005086
  30. Alipour A. Demystifying the biophoton-induced cellular growth: A simple model. Journal of Advanced Medical Sciences and Applied Technologies. 2015; 1(2):112. doi: 10.18869/nrip.jamsat.1.2.112
  31. Kreimer G. The green algal eyespot apparatus: A primordial visual system and more? Current Genetics. 2008; 55(1):19–43. doi: 10.1007/s00294-008-0224-8
  32. Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, et al. Archaeal-type rhodopsins in Chlamydomonas: Model structure and intracellular localization. Biochemical and Biophysical Research Communications. 2003; 301(3):711–7. doi: 10.1016/s0006-291x(02)03079-6
  33. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002; 415(6875):1047–51. doi: 10.1038/4151047a
  34. Cohen P. The structure and regulation of protein phosphatases. Annual Review of Biochemistry. 1989; 58(1):453–508. doi: 10.1146/annurev.bi.58.070189.002321
  35. Poovaiah BW, Reddy ASN, Leopold AC. Calcium messenger system in plants. Critical Reviews in Plant Sciences. 1987; 6(1):47–103. doi: 10.1080/07352688709382247
  36. Roberts D. Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology. 1992; 43(1):375–414. doi: 10.1146/annurev.arplant.43.1.375
  37. Litvin FF, Sineshchekov OA, Sineshchekov VA. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978; 271(5644):476–8. doi: 10.1038/271476a0
  38. Kamiya R. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. The Journal of Cell Biology. 1984; 98(1):97–107. doi: 10.1083/jcb.98.1.97
  39. Harz H, Hegemann P. Rhodopsin-regulated calcium currents in Chlamydomonas. Nature. 1991; 351(6326):489–91. doi: 10.1038/351489a0
  40. Jekely G. Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1531):2795–808. doi: 10.1098/rstb.2009.0072
  41. Yoon HS, Hackett JD, Pinto G, Bhattacharya D. The single, ancient origin of chromist plastids. Journal of Phycology. 2002; 38(1):40. doi: 10.1046/j.1529-8817.38.s1.8.x
  42. Hand WG, Schmidt JA. Phototactic orientation by the marine dinoflagellate gyrodinium dorsum kofoid. The Journal of Protozoology. 1975; 22(4):494–8. doi: 10.1111/j.1550-7408.1975.tb05217.x
  43. Huang B. The contractile process in the ciliate, stentor coeruleus: I. The role of microtubules and filaments. The Journal of Cell Biology. 1973; 57(3):704–28. doi: 10.1083/jcb.57.3.704
  44. Tao N, Orlando M, Hyon JS, Gross M, Song PS. A new photoreceptor molecule from Stentor coeruleus. Journal of the American Chemical Society. 1993; 115(6):2526–8. doi: 10.1021/ja00059a068
  45. Checcucci G, Shoemaker RS, Bini E, Cerny R, Tao N, Hyon JS, et al. Chemical structure of blepharismin, the photosensor pigment for blepharisma japonicum. Journal of the American Chemical Society. 1997; 119(24):5762–3. doi: 10.1021/ja970713q
  46. Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270–6. doi: 10.1242/jeb.023283
  47. Thiele J, Schultz JE. Ciliary membrane vesicles of paramecium contain the voltage-sensitive calcium channel. Proceedings of the National Academy of Sciences. 1981; 78(6):3688–91. doi: 10.1073/pnas.78.6.3688
  48. Doughty M, Dryl S. Control of ciliary activity in Paramecium: An analysis of chemosensory transduction in a eukaryotic unicellular organism. Progress in Neurobiology. 1981; 16(1):1–115. doi: 10.1016/0301-0082(81)90008-3
  49. Hinrichsen RD, Saimi Y, Hennessey T, Kung C. Mutants in paramecium tetraurelia defective in their axonemal response to calcium. Cell Motility. 1984; 4(4):283–95. doi: 10.1002/cm.970040406
  50. Machemer H, Ogura A. Ionic conductances of membranes in ciliated and deciliated paramecium. The Journal of Physiology. 1979; 296(1):49–60. doi: 10.1113/jphysiol.1979.sp012990
  51. Brehm P, Eckert R. An electrophysiological study of the regulation of ciliary beating frequency in paramecium. The Journal of Physiology. 1978; 283(1):557–68. doi: 10.1113/jphysiol.1978.sp012519
  52. Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270–6. doi: 10.1242/jeb.023283