Research Paper: Artificial intelligence and stochastic processbased analysis of human psychiatric disorders

Yashvi Bhavsar¹, Khyati Mistry¹, Nishchay Parikh¹, Himani Shah¹, Adarsh Saraswat¹, Helia Givian², Mojataba Barzegar^{3,4,5}, Maryam Hosseini⁶, Khojaste Rahimi Jaberi⁶, Archana Magare¹, Mohammad Javad Gholamzadeh⁷, Hadi Aligholi⁶, Ali-Mohammad Kamali⁶, Prasun Chakrabarti⁸, Mohammad Nami^{5,6,9}, [©]

1. Department of Computer Science and Engineering, Institute of Technology & Management Universe, Dhanora Tank Road, Near Jarod, Vadodara - 391510, Gujarat, India

2. Preclinical Core Facility, Tehran University of Medical Sciences, Tehran, Iran

3. Intelligent quantitative biomedical imaging (iqbmi), Tehran, 1955748171, Iran

4. School of Medical Physics and Medical Engineering, Tehran University of Medical Sciences, Tehran, 14399-55991, Iran

5. Society for Brain Mapping and Therapeutics (SBMT), Brain Mapping Foundation (BMF), Middle East Brain + Initiative, Los Angeles, CA 90272, CA, USA

6. Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran

7. Students' Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

8. Provost, Techno India JNR, Institute of Technology, Udaipur 313003, Rajasthan, India

9. Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Republic of Panama

Citation Bhavsar Y, Mistry K, Parikh N, Shah H, Saraswat A, Givian H, Barzegar M, Hosseini M, Rahimi Jaberi K, Magare A, Gholamzadeh MJ, Aligholi H, Kamali AM, Chakrabarti P, Nami M. Artificial intelligence and stochastic process-based analysis of human psychiatric disorders. JAMSAT. 2021; 6(1): 33-53.

doi) https://dx.doi.org/10.30476/jamsat.2021.93288.1027

Article info: Received: 17 October 2021 Accepted: 06 December 2021

Keywords:

Alzheimer's disease, Anxiety, Artificial Intelligence, Depression, DT, KNN, Logistic Regression, MLP, Personality Disorder, RF, Schizophrenia, SVM

ABSTRACT

This paper contains an analysis and comparison of different classifiers on different datasets of Psychiatric Disorders- Personality Disorder, Depression, Anxiety, Schizophrenia and Alzheimer's disease. Psychiatric disorders are also referred to as mental disorders, abnormalities of the mind that result in persistent behavior which can seriously cause day to day function and life. Stochastic in AI refers to if there is any uncertainty or randomness involved in results and are used during optimization; Using this process also helps to provide precise results. The study of stochastic process in AI uses mathematical knowledge and techniques from probability, set theory, calculus, linear algebra and mathematical analysis like Fourier analysis, real analysis, and functional analysis. this technique is used to construct neural network for making artificial intelligent mode for processing and minimizing human effort. This paper contains classifiers like SVM, MLP, LR, KNN, DT, and RF. Several types of attributes are used and have been trained by Weka tool, MATLAB, and Python. The results show that the SVM classifier showed the best performance for all the attributes and disorders researched in this paper.

* Corresponding Author: Mohammad Nami, MD, PhD. Address: Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran Tel: +987132305488 E-mail: torabinami@sums.ac.ir 1. Background

Psychiatric Disorder is a mental illness that disturbs one's thinking, moods, and behaviors. Its consequence is an increase in risk of disability, pain, death, or loss of freedom. Recently, the implementation areas of Artificial Intelligence (AI) are growing. AI and computer simulation play a vital role in domain research such as statistics, forecasting, discovery, and more. With this technology, a solution to various problems can be found accordingly. Moreover, the stochastic process is when the initial state is known; however, the next state is unpredictable. Also, it has randomness, and the patterns need to be recognized.

In this paper, diverse psychiatric disorders' datasets are analyzed for their efficacy in predicting psychiatric disorders. Furthermore, the Weka tool, MATLAB, and Python are used to perform the analyses. The selection of which classifiers to use was based on the research done in the literature survey. Depression is a constant feeling of sadness and loss of interest. A personality disorder is a mental disorder in which one has a rigid and unhealthy pattern of thinking, functioning, and behaving. Anxiety disorder is excessive fear or stress. Schizophrenia is a serious mental illness that causes irrational thoughts, abnormal actions, delusion and wandering, such as hearing loss.

Alzheimer's disease (AD) is a progressive and degenerative brain disorder that results in nerve cell death, tissue loss, and memory loss in the brain. The global rate of AD is gradually increasing, and early diagnosis of AD is essential for the patient's care to control and prevent the progression of the disease for future treatments.

2. Literature Survey

Table 1 summarizes methodology and findings of studies regarding psychiatric disorders.

3. Method

Classification is a technique to identify the classes of given data points. To classify the data, we use classifiers. Classifiers take some data as input (training data), using which they train the model and find out how the data are related according to a class. Five disorders (Depression, Personality Disorder, Anxiety, Schizophrenia, and Alzheimer's Disease) are explained in this paper. One dataset for each disorder is taken for training and analysis. We focused on features from every dataset and classifiers were applied on each of the attributes. Analysis of each dataset by selecting the most important attribute out of many and analyzing them with classifiers, is the main process of our dataset analysis. Based on research we have listed, classifiers who have achieved highest accuracy in psychiatric disorders, on reference to this, Support Vector Machine (SVM), Logistic Regression, Multi-Layer Perceptron (MLP), Decision Tree (DT), k-Nearest Neighbor (KNN) and Random Forest (RF), are chosen as shown in Figure 1.

Support Vector Machine (SVM)

A Support Vector Machine is a machine learning algorithm used mainly for classification. SVM works both for regression and classification, but nowadays it is mostly used for classification due to its precise classifying ability. In this, the data is divided into n-dimensional spaces called hyperplanes. A decision boundary is created so that the new data can be separated and put according to its features into different classes (10).

Logistic Regression (LR)

Logistic Regression is the extension of linear regression. In this, instead of straight lines or hyperplanes, data is fitted using a logistic function with only two possible outcomes, 0 and 1 (12).

Multi-Layer Perceptron (MLP)

MLP is an addition to the feed-forward neural network. In this, there are three layers- Input layer (which receives the input data to be preprocessed), output layer (which performs the classification) and hidden layer present between input and output layer, containing arbitrary layers that are true computational engines of MLP (12).

Decision Tree (DT)

A Decision Tree is a flowchart type tree-like structure whose internal nodes are the tests on attributes, each leaf node holds a class label and every branch is the outcome of the test (12).

December 2021, Volume 6, Issue 1

Table 1. Literature survey on psychiatric disorders

Research Title	Methodology	Findings
Arribas et al.	- 130 participants (BD, BDP, and	Mood scores accuracy:
"A signature-based machine learning	healthy individuals)	- Healthy = 89-98%
model for distinguishing bipolar	- Classifier: Random forest	- BD = 82-90%
disorder" (2018). (1)	- Signature-Based Model	- BDP = 70-78%
Acharya et al.	- 30 Participants (15 depressed and	Left hemisphere:
"Automated EEG-based Screening of	fifteen healthy individuals)	- Accuracy = 93.54%,
Depression Using Deep Convolutional Neural Network" (2018) (2)	- EEG signals of both left and right brain hemispheres (open and rest	- Sensitivity = 91.89%,
	states 5 minutes)	- Specificity = 95.18%.
	- 13 layered Deep CNN model	Right hemisphere:
	- Ninety percent train, 10% test	- Accuracy = 95.49%,
	- The network was trained using the	- Sensitivity = 94.99%,
	backpropagation algorithm with a batch size of five.	- Specificity = 96.00%.
Shrivastava et al.	- OCDP and Non-OCDP participants	- SVMR accuracy = 97±1%.
"A SVM-based classification approach	- Blood samples	- Fuzzy C-Means better with accuracy
for obsessive compulsive disorder by oxidative stress biomarkers" (2019). (3)	- SVM with 2 variants, Random Forest, Linear Discriminant Analysis, and K-NN (base classifier)	= 76.67%
	- 5 osbMarkers	
	- Clusters: K-Means and Fuzzy C- Means	
Saeedi et al.	- 34 depressed and thirty healthy	Accuracy were as follows:
"Major depressive disorder	individuals	- E-KNN = 98.44% (±3.4), SVM =
assessment via enhanced k-nearest neighbor method and FEG signals"	- Feature selection method:	92.18% (±6.9), KNN = 95.31% (±5.2), MLP = 93.75% (+6.8)
(2020). (4)	Genetic Algorithm	- Sensitivity: F-KNN = 97 10% SVM =
	- Three Classifiers: E-KNN, SVM, and MLP	88.23%, KNN =96.80%, MLP = 90.00%
	- 10-Cross Validation	- Specificity: E-KNN = 100%, SVM =96.66%, KNN =93.33% MLP =94.41%
Cremers et al.	- Participants: 51 BPD, 26 Cluster C Disorder, and forty-four non-patients	- Tonic-Strength model highest Balanced Accuracy = 62%
"Borderline personality disorder classification based on brain network measures during emotion regulation" (2020). (5)	 fMRI data (acquired and preprocessed) 	- BPD vs NPC = 55% (bal. acc.)
	- Images formatted from BrainVoyager to nifti format.	
	- Phasic and Tonic Networks	
	- Classifier: Linear Support Vector Machine	

Research Title	Methodology	Findings
Yang et al.	- Examined fractional Amplitude Low- Frequency Fluctuation (fALFF)	- SVM = 72%
naive obsessive-compulsive disorder patients and healthy controls by	- Applied Support Vector Machine (SVM) to discriminate OCD patients	
applying an SVM to resting-state functional MRI data" (2019). (6)	- Values of fALFF, calculated from sixty-eight drug-naive OCD patients and sixty-eight demographically matched healthy controls (classification model)	
Khazbak et al.	- User adds a diary input.	- SVM = 90.1%
"MindTime: Deep Learning Approach	- Analyzed to detect if there are signs	- LSTM = 91%
for Borderline Personality Disorder Detection" (2021), (7)	of BPD symptoms.	- CNN = 65%
	 Investigation of different classifiers to extracts features (Naive Bayes, SVM, KNN, and finally LSTM) 	
Bracher-Smith et al.	- Classifiers: naive Bayes, k-Nearest	- Schizophrenia :0.54–0.95 AUC
"Machine learning for genetic	Neighbors (k-NN), penalized regression, decision trees, random	- Bipolar: 0.48–0.65 AUC
prediction of psychiatric disorders: a systematic review" (2021). (8)	forests, boosting, Bayesian networks,	- Autism: 0.52–0.81 AUC
-,,-(-,-	Gaussian processes, Support Vector Machines (SVMs), and neural	- Anorexia: 0.62–0.69 AUC
	networks	- AUC: Area Under the ROC (Receiver
	 Dataset: thirteen studies were selected for inclusion, containing seventy-seven distinct ML models 	Operating Characteristic) Curve
	- Type: psychiatric disorders from genetics alone	
Saidi et al.	- 189 participants (audio): 107	Accuracy:
"Hybrid CNN-SVM classifier for	training set, thirty-five validation set, and forty-seven test set	- CNN = 58.57%
efficient depression detection system" (2021). (9)	- DAIC-WOZ dataset is used.	- Hybrid CNN-SVM (the proposed
	- Using CNN classifier for training	model) = 68%
	 The fully connected layers are replaced by SVM layers. 	
	- Input map is given to CNN.	
	- The classification is done by an SVM classifier.	
Priya et al.	- 348 participants	For depression:
"Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms" (2019). (10)	- DT, Random Forest, Naive Bayes, SVM, and KNN.	- Accuracy
		- DT=0.778, RF=0.798, Naive Bayes=
	- Data from the Depression, Anxiety and Stress Scale questionnaire (DASS	0.855, SVM=0.803, KNN=0.721
	'21)	
	 Scores labeled on the basis of severity - normal, mild, moderate, severe, and extremely severe. 	- D1=0.723, RF=0.766, Naive Bayes= 0.836, SVM=0.765, KNN=0.687

December 2021, Volume 6, Issue 1

Research Title	Methodology	Findings	
Pan et al. "Detecting Manic State of Binglar	- Two classifiers are used- SVM (Support Vector Machine) and GMM	For single patient experiment, accuracy obtained overall:	
Disorder Based on Support Vector Machine and Gaussian Mixture Model Using Spontaneous Speech" (2018). (11)	(Gaussian Mixture Model)	- SVM = 88.56±5.26	
	 Data Collection: twenty-one hospitalized patients' speeches were recorded. 	- GMM = 84.46±1.85	
	 Features Extraction: key features pitch, MFCC, etc. extracted by 	- For multiple patient experiments, accuracy overall:	
	software SMILE.	- SVM =60.87±18.90	
	The LIBSVM toolbox \rightarrow SVM	- GMM = 72.27±6.90	
	HTK tool \rightarrow GMM		
	 - 3 patients for single patient test & 21 patients for multiple patients test 		
	 The manic state detection accuracies of SVM and GMM compared using student's t-test, 		
Dabhane et al.	- Logistic Regression, KNN, SVM, DT,	- KNN = 73.29%	
"Depression Detection on Social	MLP, and Naive Bayes	- Logistic regression = 84.86%	
Media using Machine Learning	- Data collection: diverse types of tweets from twitter API (CSV file)	- SVM = 85.04%	
	- Data Preprocessing: removal of	- Naive Bayes Classifier = 83.04%	
	duplicate entries	- Decision tree=80.53%	
	 Exploratory Data Analysis: analyze datasets and collect key features 	- Multilayer perceptron (MLP) = 78.65%	
	- Training and Testing 2 steps:		
	1. Implementing Algorithms Individually	For ensemble implementation:	
		- Voting Classifier = 85.35%	
	2. Implementing Ensemble Learners: Here, the voting classifier and Blending ensemble classifier were used for greater performance and accuracy.	- Blending Classifier = 87.21%	
Islam et al. "Detecting Depression Using K- Nearest Neighbors (KNN) Classification Technique" (2018). (13)	- 7145 Facebook comments data was	Emotional Process:	
	collected using NCapture and processed using the LIWC2015 tool and then paraphrases were extracted to detect emotions.	- Fine KNN = 0.59, Medium KNN = 0.59, Coarse KNN = 0.71, Cosine KNN = 0.58, Cubic KNN = 0.59, Weighted KNN= 0.60	
	- Different KNN classifiers like Fine	Linguistic Style:	
	Cosine KNN, Cubic KNN, and Weighted KNN were applied and their f-measure was compared.	- Fine KNN = 0.58, Medium KNN = 0.57, Coarse KNN = 0.70, Cosine KNN = 0.60, Cubic KNN = 0.57, Weighted KNN= 0.62	
	- The experiment was done in 10-fold	Temporal Process:	
	datasets.	- Fine KNN = 0.58, Medium KNN =	
		0.57, Coarse KNN = 0.70, Cosine KNN = 0.59, Cubic KNN = 0.57, Weighted KNN= 0.58	
		All features:	
		- Fine KNN = 0.58, Medium KNN = 0.56, Coarse KNN = 0.67, Cosine KNN = 0.60, Cubic KNN = 0.55, Weighted KNN= 0.61	

Research Title	Methodology	Findings
Wang et al. "Using Electronic Health Records and Machine Learning to Predict Postpartum Depression (PPD)" (2019). (14)	 Clinical assessment of PPD was used as the outcome based on Statistics Canada and International Classification of Diseases (ICD-10- CM). Al methods included LR, SVM, DT, 	The results suggest a potential for applying machine learning to EHR data to predict PPD and inform healthcare delivery. Best prediction performance achieved an AUC of 0.79 that it was for SVM
	NB, XGBoost, and RF.	model.
"Severity Assessment of Social	- They recruited eighty-time participants from 502.	the 2 layer or 3 layer CNN and LSTM with attention mechanisms.
Models on Brain Effective Connectivity" (2021). (15)	task for SAD assessment to acquire EEG data.	The result of CNN+LSTM:
	 EEG data preprocessing is done. And high and low frequency deflections. 	- Sensitivity=95%
	- Dataset helps to explain brain activity values.	- Specificity=85% - Precision=86%
	- Applied connectivity features for precision based SAD prediction based on PDC algorithm.	
	- Different Deep learning network algorithm applied and then do analysis on the findings.	
Sau and Bhakta, "Screening of anxiety and depression	- Study the variable data including the questionnaire with people such as	The classifiers and their accuracy and precision data:
among seafarers using machine learning technology" (2019). (16)	 Feature selection eliminates the irrelevant features from the set of predictor values. A final dataset with all fourteen features and one target and 470 instances were prepared for different classification. This was divided into two groups based on the period of data collection. 	- CatBoost = 89.3%, 89%
		- Logistic regression = 87.5%, 84%
		- SVM = 82.1%, 80.7%
		- Naive Bayes = 82.1%, 76.9%
		- Random Forest = 78.6%, 80.7%
Jothi et al, "Predicting generalized anxiety	- The data acquisition phase, data relevant to the study were collected.	The performance of prediction models without feature selection is less than
disorder among women using Shapley value" (2020). (17)	- After that, Data cleaning and transformation would be performed.	The accuracy, sensitivity and
	- The feature selection using Shapley value was conducted using the	specificity of classifier with feature selection, respectively:
	original GAD features.	- Naive Bayes = 80%, 98.79%, 76.47%
	inputs for classification prediction algorithms.	- Random Forest = 90.6%, 93.47%, 69.53%
	- In the last phase, classification performance criteria were used to evaluate the prediction algorithm.	- J48 = 95.70%, 97.5%, 86.3%

Research Title	Methodology	Findings	
Gui et al. "The Impact of Emotional Music on Active BOL in Patients with Depression	- A large convolution kernel of the same size as the correlation matrix for the feature matching of 264 ROIs.	Deep analysis of the brain mechanism of depressed patients is more conducive to solving the	
Based on Deep Learning: A Task- State fMRI Study" (2019). (22)	 4D fMRI data are used to generate the 2D correlation matrix of one person's brain based on ROIs 	condition of depressed patients.	
	2. processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the DLM in this paper is compared with SVM, logistic regression (LR), k- Nearest Neighbor (kNN), a common DNN, and a deep CNN for classification.		
	3. Calculate the matched ROIs from the intermediate results of the DLM which can help related fields further explore the pathogeny of depression patients.		
Wen et al. "Deep Learning Methods to Process fMRI Data and Their Application in the Diagnosis of Cognitive Impairment" (2018). (23)	 DL methods in fMRI Data Analysis: CNN (Feature Extraction, Auto- Encoder, 3D-CNN); FNN; 	This study reviewed the recent literature of deep learning used in fMRI data.	
	- Development of DL Methods for fMRI Data Analysis in Cognitive Impairment.	We can make full use of the auto- extracted features to improve accuracy of deep learning methods.	
Liu et al.	- 3D FDG-PET image;	BGRU can boost the classification.	
"Classification of Alzheimer's Disease	- ADNI dataset(PET-MRI-Othertests);	This method performs better than others.	
By Combination of Convolutional and Recurrent Neural Networks Using	- MCI, NC and early AD classification.		
FDG-PET Images" (2018). (24)	- Using deep 2D CNN network, Recurrent neural networks (RNNs);		
	- BGRU network layer for classification		
Sau and Bhakta,	- 510 participants	The results showed that Random	
"Predicting anxiety and depression in elderly patients using machine learning technology" (2017). (25)	- Ten classifiers (BN, NB, Log, MLP, SMO, KS, RS, J48, RF, RT) were evaluated with a data set of geriatric patients.	in elderly patients better than other classifiers also with accuracy 91% and false positive 10%, gold standard tool.	
	- They were tested with a 10-fold cross validation method.	- RF (AUC: 94.3, Accuracy: eighty-nine, F1: 85.1)	
McGinnis et al.	- 63 children and their primary	Analysis suggests that, when paired	
"Rapid Anxiety and Depression Diagnosis in Young Children Enabled	- DSM-IV was checked to diagnose mental disorders	with machine learning, 20 seconds of wearable sensor data extracted from a fear induction task can be used to	
Learning" (2018). (26)	- Participant motion was tracked using a belt-worn IMU.	diagnosis internalizing disorders in young children with a high level of accuracy and at a fraction of the cost	
	 classification accuracy compared for SVM, DT, kNN, LR also for just accelerometer features (ACC), just gyro features (GYR), just angle features (ANG). 	and time of existing assessment techniques and the LR model is the best performing compared to other with accuracy of 80% and AUC 0.92.	

Bhavsar Y, et al. Artificial intelligence and stochastic process-based analysis of human psychiatric disorders. JAMSAT. 2021; 6(1): 33-53.

Research Title	Methodology	Findings	
Gui et al. "The Impact of Emotional Music on Active ROI in Patients with Depression	 A large convolution kernel of the same size as the correlation matrix for the feature matching of 264 ROIs. 	Deep analysis of the brain mechanism of depressed patients is more conducive to solving the	
Based on Deep Learning: A Task- State fMRI Study" (2019). (22)	 4D fMRI data are used to generate the 2D correlation matrix of one person's brain based on ROIs 	condution of depressed patients.	
	2. processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the DLM in this paper is compared with SVM, logistic regression (LR), k- Nearest Neighbor (kNN), a common DNN, and a deep CNN for classification.		
	3. Calculate the matched ROIs from the intermediate results of the DLM which can help related fields further explore the pathogeny of depression patients.		
Wen et al. "Deep Learning Methods to Process fMRI Data and Their Application in the	- DL methods in fMRI Data Analysis: CNN (Feature Extraction, Auto- Encoder, 3D-CNN); FNN;	This study reviewed the recent literature of deep learning used in fMRI data.	
Diagnosis of Cognitive Impairment" (2018). (23)	- Development of DL Methods for fMRI Data Analysis in Cognitive Impairment.	We can make full use of the auto- extracted features to improve accuracy of deep learning methods.	
Liu et al.	- 3D FDG-PET image;	BGRU can boost the classification.	
"Classification of Alzheimer's Disease	- ADNI dataset(PET-MRI-Othertests);	This method performs better than	
by Combination of Convolutional and Recurrent Neural Networks Using	- MCI, NC and early AD classification.	others.	
FDG-PET Images" (2018). (24)	- Using deep 2D CNN network, Recurrent neural networks (RNNs);		
	- BGRU network layer for classification		
Sau and Bhakta,	- 510 participants	The results showed that Random	
"Predicting anxiety and depression in elderly patients using machine learning technology" (2017). (25)	- Ten classifiers (BN, NB, Log, MLP, SMO, KS, RS, J48, RF, RT) were evaluated with a data set of geriatric patients.	in elderly patients better than other classifiers also with accuracy 91% and false positive 10%, gold standard tool.	
	- They were tested with a 10-fold cross validation method.	- RF (AUC: 94.3, Accuracy: eighty-nine, F1: 85.1)	
McGinnis et al.	- 63 children and their primary caregivers	Analysis suggests that, when paired with machine learning, 20 seconds of	
Diagnosis in Young Children Enabled by Wearable Sensors and Machine	- DSM-IV was checked to diagnose mental disorders.	wearable sensor data extracted from a fear induction task can be used to diagnosis internalizing disorders in	
Learning" (2018). (26)	- Participant motion was tracked using a belt-worn IMU.	young children with a high level of accuracy and at a fraction of the cost	
	 classification accuracy compared for SVM, DT, kNN, LR also for just accelerometer features (ACC), just gyro features (GYR), just angle features (ANG). 	and time of existing assessment techniques and the LR model is the best performing compared to other with accuracy of 80% and AUC 0.92.	

Research Title	Methodology	Findings	
McGinnis et al. "Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and Depression in Early Childhood" (2019). (27)	 71 children who spoke fluent English and their caregivers Using DSM-IV to diagnosis children with internalizing. Assessment of audio features to characterize the ability of the proposed approach for identifying children with an internalizing disorder Classification models included LR, SVM with a linear and Gaussian kernel and RF. 	The results showed that machine learning analysis of audio data from the task can be used to identify children with an internalizing disorder with 80% accuracy (54% sensitivity, 93% specificity). This new tool is shown to outperform clinical thresholds on parent-reported child symptoms, which identify children with an internalizing disorder with lower accuracy and similar specificity and sensitivity in this sample.	
Nemesure et al. "Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence" (2021). (28)	 Use of Electronic Health Records (EHR) data of 4184 undergraduate students A total of fifty-nine biomedical and demographic features from the general health survey were used. Psychiatric diagnoses were done by 	The results indicated moderate predictive performance for the application of machine learning methods in detection of GAD and MDD based on EHR data.	
Richter et al. "Using machine learning-based analysis for behavioral differentiation between anxiety and depression" (2020). (29)	 Al methods included XGBoost, RF, SVM, kNN and NN 125 participants: included HA, HD, HAD, and LAD (control) 	The prediction model for differentiating between symptomatic participants (i.e., high symptoms of	
	 Questionnaires to assess anxiety and depression included DASS-213, STAI-T27, BDI–II28, RRS29, and PSWQ30. Behavioral tasks included EDPT, RTs, FAFT, WIT, WSAP, FET, and IST - AI method: DT 	depression, anxiety, or both) compared to control revealed a 71.44% prediction accuracy for the former (sensitivity) and 70.78% for the latter (specificity). 68.07% and 74.18% prediction accuracy was obtained for a two-group model with high depression/anxiety, respectively and Distinguishing between anxiety and depression by specific behaviora	
Chen et al. "Detecting Abnormal Brain Regions in	- Sample size: COBRE: Paranoid SZ=34, NC=34	- Accuracy = 85.27% - Sensitivity = 85.87%	
Schizophrenia Using Structural MRI via Machine Learning" (2020). (30)	- Extraction white matter and gray matter volume	- Specificity = 85.08%	
Calhas et al. "On the use of pairwise distance learning for brain signal classification	- USING SVIN Classifier - A sample of eighty-four people; Feature extraction was performed using SNN architecture along with DSTFT.	From the tested classifiers. DSTFT- SNN-XGB were found to be the most efficient.	
with limited observations" (2020). (31)	- After receiving the output of feature	- Accuracy = 0.95±0.05%	
	extraction the following classifiers	- Sensitivity = $0.98\pm0.02\%$	
	KNN. This process was performed in	- Specificity = $0.92 \pm 0.07\%$	

LOOCV.

Research Title	Methodology	Findings	
Fernando et al.	- Recurrent ANN: LSTM layers followed by a Neural Memory Network	There are no existing machine learning models that attempt the	
"Neural memory plasticity for medical anomaly detection" (2020). (32)	with plasticity mechanism using EEG recordings from the auditory oddball trials.	classification of schizophrenia risk using EEGs. With 93.86 ± 0.21% accuracy.	
Guo et al.	- Sample size: COBRE: SZ=179,	- Accuracy = 81.75%	
"Support Vector Machine-Based	NC=77	- Sensitivity = 84.21%	
Schizophrenia Classification Using Morphological Information from	 Extraction structural features (hippocampus, amygdala) 	- Specificity = 81.16%	
Subregions" (2020). (33)	- Using SVM classifier		
Phang et al.	- The proposed approach uses the	Performance of MDC-CNN on decision	
"A Multi-Domain Connectome Convolutional Neural Network for	SZ and Healthy Control (HC) using	ever - Accuracy = 91.69%	
Identifying Schizophrenia From EEGs Connectivity Patterns" (2020), (34)	- Feature extraction was based on	- Sensitivity = 91.11%	
	Time domain VAR model coefficient	- Specificity = 92.50%	
	matrix (2D), frequency domain PDC matrix (2D), and hand crafted complex network measures (1D).	- Classification time= 0.81s	
Oh et al.	Sample size: BrainGluSchi COBRE,	Acc=97	
"Identifying Schizophrenia Using	MCICShare, MorphCH, NUSDAST: SZ=443. NC=423	Sen=96	
Structural MRI With a Deep Learning Algorithm", (2020). (35)	- Normalization	Spec=96	
	- Create 3D images		
	- Divide the brain into eight regions in each image		
	- Using 3D CNN for classifier		
Matsubara et al. "Doop Noural Congrative Medal of	 The proposed technique accepts any type of fMRI time series. It can be a 	The accuracy of the proposed model for the following disorder are:	
Functional MRI images for Psychiatric	3D, 2D, k-space image, a vector of voxels, a feature vector of ROIs or a	SZ=71.3%	
Disorder Diagnosis" (2019). (36)	state of dynamic functional connectivity.	BD=64%	
	- The DGM (deep neural generative model) approach was implemented using deep neural networks.		
Talpalaru et al.	- Sample size: NUSDAST: SZ=104, NC=63	Acc=75	
"Identifying schizophrenia subgroups using clustering and supervised learning" (2019). (37)	- Segmentation using CIVET pipeline		
	 Extraction means cortical thickness value from seventy-eight regions 		
	- Using agglomerative hierarchical clustering to feature reduction/selection		
	- Using SVM, RF, Logistic regression to prediction that RF was better than others (accuracy)		

Research Title	Methodology	Findings
Liang et al, "Classification of First-Episode Schizophrenia Using Multimodal Brain	- This paper discussed identifying schizophrenia and multimodal multivariate neuroimaging features.	- 75.05% Accuracy was achieved from fused structural and diffusion tensor imaging metrics.
Features: A Combined Structural and Diffusion Imaging Study" (2019). (38)	 Multiple brain measures including regional Gray Matter (GM) volume, cortical thickness, gyrification, Fractional Anisotropy (FA), and Mean Diffusivity (MD) wore ovtracted using 	- Average accuracy derived from combined features selected from cortical thickness, gyrification, FA, and MD was 76.54%.
	fully automated procedures.	- 63.50% for GMV, 66.47% for cortical thickness, and 66.00% for MD. In
	- Gradient Boosting Decision Tree was then applied on the structural MRI data.	another dataset, average accuracy was 54.70% for GMV, 60.94% for cortical thickness, and 67.43% for MD.
Chatterjee et al,	- Preprocessing of functional MRI	Ninety-four percent (SVM)
"Identification of brain regions associated with working memory deficit in schizophrenia" (2019). (39)	- Group ICA is applied to the Time series fMRI data.	Ninety-six percent (1-NN)
	- Segment ICs with AAL atlas. Then extracting statistical features for each segment.	
	 Applying FDR for feature ranking and classification using the feature subsets for each IC in LOOCV (leave- one-out cross validation) and SVM, and k-nearest neighbors. 	
Kalmady et al. "Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning" (2019). (40)	-Firstly, image acquisition of MRI data was done. Then image pre-processing was performed, in which pre- processing and feature extraction was done using MATLAB. After that each functional image was smoothed using a 4mm FWHM Gaussian kernel. Lastly, prediction and evaluation framework. "L2-regularized Logistic regression" Al technique was used.	The Accuracy of the L2 regularized logistic regression technique is 87%.
Qureshi et al.	Structural data acquisition, functional	Acc=98.01%
"3D-CNN based discrimination of	functional MRI data, independent	Sen=97.49%
fMRI" (2019). (41)	component analysis using MELODIC, classification using 3D-CNN deep learning framework.	Spec=98.62%
Yu et al.	- Sample size: Clinical: SZ=100, NC=100	Acc=72
"Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost" (2018). (42)	- Extraction GLCM features	
	- Using XGBoost classifier	
Manohar and Ganesan.	- Sample size: NAMIC: 60 Images	Acc=90
"Diagnosis of Schizophrenia Disorder	from 20 people (S2+NC)	Sen=92.86
objective BPSO Based Feature Selection with Fuzzy SVM" (2018).	- Extraction nu moments, GLCM, zernike moments, and structure tensor	Spec=87.5
(43)	- Using BPSO based on fuzzy SVM classifier	

Figure 1. Comparison of classifiers used in literature

Random Forest (RF)

Random forest (RF) models are machine learning models that make output predictions by combining outcomes from a sequence of regression decision trees (60). It creates many classification trees and a bootstrap sample technique is used to train each tree from the set of training data. This method only searches for a random subset of variables in order to obtain a split at each node. For the classification, the input vector is fed to each tree in the RF, and each tree votes for a class. Finally, the RF chooses the class with the highest number of votes (61).

k-Nearest Neighbor (KNN)

KNN assumes that similar things exist nearby. KNN classifies the new data into most related categories. It collects and stores all the available data and then classifies a new category based on similarities between data (12).

3.1. Proposed Method

3.1.1. Weka Tool Approach

Weka tool is a collection of data mining tasks with machine learning algorithms. Data prepossessing, regression, visualization, classification, clustering, and association rules are predefined tools in the Weka tool. In this paper, for depression, personality disorder, anxiety, and schizophrenia, we have used the weka tool to apply three classifiers; SVM, Logistic, and MLP. In this approach, dataset analysis is done by Preprocessing and Classifying the dataset attributes. A flowchart of this approach is shown in Figure 2.

Raw dataset is taken as input in the weka tool. Instances store all values (nominal, numeric) in floating point numbers, if the attribute is nominal then the value is stored at the corresponding value in attributes definition. Every dataset had different instances. In Weka tool the first step is to preprocess the dataset and then classify it to obtain results.

1. Preprocessing

Attributes are the fields of data. They are also called features of the data. Attributes in the dataset can have data types such as: numeric (contains a floating-point number), nominal (represents a fixed set of nominal values), string (represents a dynamically expanding set of nominal values), date (represents a date), and relational (contain other attributes) is used for representing Multi-Instance data. In preprocessing, firstly nominal attributes are normalized after discretization is applied to the same. Secondly, numeric attributes are standardized for setting up the standard deviation to one.

JAMSAT

Journal of Advanced Medical Sciences and Applied Technologies

a. Normalization

This method allows the transformation of any element from an equivalence class of any shape transforms into a specific one. It helps to eliminate the gross influences. Dataset was raw before normalizing, after normalizing all the nominal attributes of the dataset, the minimum and maximum values were set to 0 and 1 respectively. The scale is set to 1.0. The value of distinct was forty-four. This is how attribute values are brought to alignment using normalization.

b. Discretization

This filter allows converting a real-valued attribute into an ordinal attribute. It is a process of dividing the geometry of a dataset into finite elements to prepare for analysis. Dataset was normalized before applying discretization to attributes. After applying discretization to all nominal attributes, the value of count and weight became the same. The labels were divided into ten parts having a bin range precision of six. The desired weight of instances per interval was 1.0. Value of distinct became ten from forty-four after discretization.

c. Standardization

This filter is a scaling technique where the values are centered around the mean with a unit standard deviation. Unique standard deviation is obtained by standardization. Before applying standardization the standard deviation, mean, maximum and minimum can be any float value. After applying this method, the value of standard deviation becomes 1.0 for every numeric attribute in the dataset. Minimum and maximum values can be any negative/positive float value while the mean will be set to 0. Preprocessing is complete and the dataset is ready to classify.

2. Classification

This method includes classifier, attribute selection, and test options. Test options are used to set the percentage split value or cross-validation (folds). Only one attribute can be chosen at a time to obtain specific results for that attribute. Folds in machine learning means the distribution of data into equivalent parts like threefold, four-fold, etc.

Weka-tool Dataset Analaysis

Figure 2. Weka Tool Dataset Analysis

Number of folds can be the same as the number of instances but to obtain accuracy folds should be between 5 to 20, not more than that. If folds are set to 10, then 1 fold is taken for training and the remaining 9 are taken for testing in the weka tool. Classifiers, attributes, and folds are predefined tools in the weka tool. Machine learning uses some specific mathematical methods to train datasets which are known as classifiers. In the Weka tool, firstly an attribute is selected then folds are set to 10, 12, or 8 (as per wish), then a classifier is selected, and finally after some preparation time, we obtain the results for that particular attribute and classifier. One after one attribute is trained and tested to observe which attributes obtain the highest accuracy among all attributes.

3.1.2. MATLAB Python Approach

MATLAB is a high-level language and interactive environment for numerical computation, visualization, and programming which is especially useful for medical images processing. Also, Python is an interpreted high-level general-purpose programming language. Its amazing libraries and tools help in achieving the task of image processing very efficiently. In this paper, for Alzheimer's disease diagnosis, we have used MATLAB for preprocessing, segmentation, and feature extraction, and used Python to apply SVM, KNN, DT, RF and MLP classifiers on the feature matrix. In this approach, dataset analysis is done by Preprocessing, Segmentation, Feature extraction, and classifying the dataset attributes. A flowchart of this approach is shown in Figure 3.

For the Alzheimer's disease study, we obtained data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the Food and Drug Administration (FDA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), non-profit private pharmaceutical companies, and other organizations, with funding of \$60 million for the five-year private-public partnership (62). In this study, 50 MRI images data were collected from healthy people (Mean of age \pm STD = 77.92 \pm 5.17 and Mean of weight \pm STD = 78.62 \pm 21.32) and people with Alzheimer's disease (Mean of age \pm STD = 74.4 \pm 9.82 and Mean of weight \pm STD = 79.14 \pm 12.26).

Figure 3. General steps to diagnosis of Alzheimer's disease based on MRI images using MATLAB and Python

All the participants in this study were scanned with GE Medical Systems or SIEMENS or Philips Medical Systems MRI scanner with 1.5 or 3 Tesla field strength. The T1-weighted MRI scans were captured with a coronal acquisition plane.

1. Preprocessing

In the analyzing process, at the first, pre-processing is performed to increase the quality of images. So the median filter was used to remove the noise in the images. The median filter is the filtering technique used for noise removal from images and signals. Median filter is very crucial in the image processing field as it is well known for the preservation of edges during noise removal (63).

December 2021, Volume 6, Issue 1

2. Segmentation

Image segmentation is the process of partitioning an image into multiple segments (64). Image segmentation is typically used to locate objects and extract regions of interest in an image. In this paper, for the diagnosis of Alzheimer's disease, the lateral ventricles regions, hippocampus, and some areas of brain tissue are considered so that after their segmentation, features can be extracted from these areas.

Table 2. Accuracy of Personality Disorder, Depression, Anxiety and Schizophrenia for different classifiers

Classifier	Disorder	Attributes and Their Accuracy
		Elapse - 99.99%
	Personality Disorder	Gender - 58.86%
		Score - 99.55%
		Age - 37.30%
SVM	Depression	Married - 80.05%
		Incoming Salary - 82.01%
		Gender - 45.45%
	Anxiety	Student - 75.75% (12 folds)
		Age - 74.24%
		Subject - 24.54%
	Schizophrenia	Onset - 80.90%
		Disorder - 70%
		Elapse - 99.99%
	Personality Disorder	Gender - 63.70%
		Score - 21.86%
		Age - 37.57%
Logistic	Depression	Married - 81.17%
		Incoming Salary - 79.71%
		Gender - 42.42%
	Anxiety	Student - 60.60% (12 folds)
		Age - 72.72%
		Subject - 19.54% (12 folds)
	Schizophrenia	Onset - 79.09% (12 folds)
		Disorder- 66.18% (12 folds)
		Elapse - 99.99%
	Personality Disorder	Gender - 57.40%
		Score - 21.06%
		Age - 33.17%
MLP	Depression	Married - 81.24%
		Incoming Salary - 77.32%
		Gender - 42.42% (12 folds)
	Anxiety	Student - 68.18%
		Age - 74.24% (12 folds)
		Subject - 16.36% (12 folds)
	Schizophrenia	Onset - 71.36% (8 folds)
		Disorder - 60.45%

The lateral ventricles regions were extracted by Otsu's thresholding method and the hippocampus region was extracted by rectangular drawing method. Also, a skull stripping algorithm is used for segmentation of brain tissues from the surrounding region, and the Gray Matter (GM), White Matter (WM), Cerebral Spinal Fluid (CSF) were extracted using different methods of segmentation and thresholding.

3. Feature extraction

After the segmentation step, the area of each regions; lateral ventricles, hippocampus and brain tissues was calculated as a feature (Since the images are two-dimensional, the volume is equal to the area). Also, according to the changes in the intensity of the hippocampus, the statistical features such as mean and standard deviation from this region as well as texture features such as Gray Level Co-occurrence Matrix (GLCM), which includes correlation, contrast, and entropy, were extracted from this region as features. From ADNI, the scores of persons in the

Mini-Mental State Examination (MMSE) and their age were also obtained to form the feature matrix. Therefore, a total of twelve features were extracted for each individual.

4. Classification

After obtaining the feature matrix for all individuals, we used the Training/Testing method to separate 70% of the data for training algorithms and 30% of the data for testing algorithms. Finally, five classifications (KNN, SVM, DT, RF, and MLP) were used to distinguish between healthy people and people with Alzheimer's. Then, Accuracy, sensitivity, and specificity were used to evaluate each of the classifiers. The results for each of the classifiers are shown in Table 3.

4. Results and Discussion

The proposed system trains and tests the model for classifying the data using certain classifiers. The application of all the classifiers- SVM, KNN, Logistic, MLP, DT, and RF- are shown in Figure 5,

Table 3. Results of average accuracy, sensitivity and specificity in 10 trials obtained from classifiers for Alzheimer's Disease (Rounded, and Mean \pm SD)

	KNN	SVM	DT	RF	MLP
	0.90 ± 0.08	0.94 ± 0.05	0.91 ± 0.03	0.94 ± 0.07	0.92 ± 0.06
Sensitivity	0.89 ± 0.10	0.94 ± 0.08	0.90 ± 0.11	0.96 ± 0.09	0.92 ± 0.13
Specificity	0.93 ± 0.15	0.93 ± 0.08	0.92 ± 0.09	0.93 ± 0.08	0.93 ± 0.08

Table 4. The Spearman correlation and Pearson correlation for each extracted features for AD diagnosis

	Spearman correlation	Pearson correlation
Lateral ventricle (LV) size	0.419	0.338
Hippocampus (HP) size	-0.836	-0.611
Mean of intensity	-0.143	0.068
STD of intensity	0.387	0.276
Contrast of intensity	-0.090	-0.070
Correlation of intensity	-0.373	-0.411
Entropy of intensity	-0.050	0.030
White matter size	-0.164	-0.219
Gray matter size	-0.137	-0.224
Cerebral spinal fluid size	0.215	-0.088
MMSE	-0.850	-0.820
Age	-0.181	-0.223

Bhavsar Y, et al. Artificial intelligence and stochastic process-based analysis of human psychiatric disorders. JAMSAT. 2021; 6(1): 33-53.

Table 2, and Table 3.

The tables below contain attributes selected for classification and their corresponding accuracies, and in case of AD, their corresponding sensitivity and specificity is also given. The attributes were selected according to their effect on the data provided in the dataset. For personality disorder, depression, anxiety, and schizophrenia, three attributes have been selected from the datasets. From the table given below we can observe that for Personality Disorder, Depression, Anxiety, and Schizophrenia, SVM performs the best and MLP showed the least overall performance. For AD, SVM and RF gave the best accuracy.

For the Alzheimer's disease study, the Spearman correlation, Pearson correlation and Mutual Information were calculated to evaluate each of the extracted features in the diagnosis of Alzheimer's disease. The results are shown in Table 4 and Figure 4.

Figure 4. Impact of each feature on Alzheimer's diagnosis based on Mutual Information

Figure 5. Results of each classifier in each psychiatric disorder

Bhavsar Y, et al. Artificial intelligence and stochastic process-based analysis of human psychiatric disorders. JAMSAT. 2021; 6(1): 33-53.

The above spider graph is plotted using data of table 2 and table 3. It shows the average accuracy for each disorder according to the classifiers.

5. Conclusion

In this research paper, SVM was better in comparison to the other two techniques. AI in psychiatric disorders uses computerized techniques as well as algorithms for diagnosis, prevention, and treatment of mental disorders. Such techniques will help society by diagnosing the disorder effectively and finding out the proper medication and treatment. Moreover, psychiatrists will be able to understand and easily find out the disorder.

In the Alzheimer's disease study, based on the Spearman correlation, Pearson correlation, and Mutual information, the extracted features were suitable features for Alzheimer's diagnosis. According to the study of papers, despite Alzheimer's disease, the lateral ventricles regions become larger and the hippocampus region becomes smaller, which in this study also follows these changes. Also, in the classification step, we tested several classifiers to find appropriate classifiers. Overall, the proposed model with the RF and SVM achieved the best performance and the accuracy of these classifiers using the proposed method are 94%.

References

(1) Perez Arribas, et al. A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Transl Psychiatry 8, 274 (2018). https://doi.org/10.1038/s41398-018-0334-0

(2) U. Rajendra Acharya, et al. Automated EEG-based Screening of Depression Using Deep Convolutional Neural Network. Journal of Computational Science, Elsevier, Volume 161, July 2018, https://doi. org/10.1016/j.cmpb.2018.04.012

(3) Shrivastava, A. et al. A SVM-based classification approach for obsessive compulsive disorder by oxidative stress biomarkers, Journal of Computational Science, Elsevier, Volume 36, September 2019, 101023, https://doi.org/10.1016/j.jocs.2019.07.010

(4) Saeedi, M., et al. Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals. Phys Eng Sci Med 43, 1007–1018 (2020). https://doi.org/10.1007/s13246-020-00897-w

(5) Cremers, H., et al. Borderline personality disorder classification based on brain network measures during emotion regulation. Eur Arch Psychiatry Clin Neurosci 271, 1169–1178 (2021). https://doi. org/10.1007/s00406-020-01201-3

(6) Yang, X., Hu, X., Tang, W. et al. Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data. BMC Psychiatry 19, 210 (2019). https://doi.org/10.1186/ s12888-019-2184-6

(7) M. Khazbak, Z. Wael, Z. Ehab, et al. "MindTime: Deep Learning Approach for Borderline Personality Disorder Detection," 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 2021, pp. 337-344, doi: 10.1109/ MIUCC52538.2021.9447620.

(8) Bracher-Smith, M., Crawford, et al. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry 26, 70–79 (2021). https://doi.org/10.1038/s41380-020-0825-2

(9) A. Saidi, S. B. Othman et al. "Hybrid CNN-SVM classifier for efficient depression detection system," 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), 2020, pp. 229-234, doi: 10.1109/IC_ ASET49463.2020.9318302.

(10) Anu Priya et al. "Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms" Procedia Computer Science, Elsevier, Volume 167, 2020, https://doi.org/10.1016/j. procs.2020.03.442

(11) Pan, Zhongde et al. "Detecting Manic State of Bipolar Disorder Based on Support Vector Machine and Gaussian Mixture Model Using Spontaneous Speech." Psychiatry investigation vol. 15,7 (2018): 695-700. doi:10.30773/pi.2017.12.15

(12) Suyash Dabhane et al. "Depression Detection on Social Media using Machine Learning Techniques", International Research Journal of Engineering and Technology (IRJET), Volume: 07 Issue: 11, 2020.

(13) M. R. Islam, A. R. M. Kamal, et al. "Detecting Depression Using K-Nearest Neighbors (KNN) 2018 Classification Technique," International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), 2018, pp. 1-4, doi: 10.1109/IC4ME2.2018.8465641. (14) Shuojia Wang "Using Electronic Health Records and Machine Learning to Predict Postpartum (PPD)"Volume 264: Depression **MEDINFO** 2019: Health and Wellbeing e-Networks for All, DOI:10.3233/SHTI190351

(15) A. Al-Ezzi, N. Yahya, N. Kamel, et al. "Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity," in IEEE Access, vol. 9, pp. 86899-86913, 2021, doi: Journal of Advanced Medical Sciences and Applied Technologies

10.1109/ACCESS.2021.3089358.

(16) Arkaprabha Sau, Ishita bhakta,"Screening of anxiety and depression among seafarers using machine learning technology", Informatics in Medicine Unlocked, Elsevier, Volume 16, 2019, https://doi.org/10.1016/j.imu.2019.100228

(17) Neesha Jothi et al,"Predicting generalized anxiety disorder among women using Shapley value",Journal of Infection and Public Health, Elsevier, Volume 14, Issue 1, January 2021, https:// doi.org/10.1016/j.jiph.2020.02.042

(18) Miseon Shim et al,"Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features", NeuroImage: Clinical, Volume 24, 2019, https://doi.org/10.1016/j.nicl.2019.102001

(19) Xing M, Fitzgerald JM and Klumpp H (2020) Classification of Social Anxiety Disorder With Support Vector Machine Analysis Using Neural Correlates of Social Signals of Threat. Front. Psychiatry 11:144. doi: 10.3389/fpsyt.2020.00144

(20) H. Alharthi, "Predicting the level of generalized anxiety disorder of the coronavirus pandemic among college age students using artificial intelligence technology," 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), 2020, pp. 218-221, doi: 10.1109/DCABES50732.2020.00064.

(21) Kyoung-SaeNa "Machine learning-based discrimination of panic disorder from other anxiety disorders", Journal of Affective Disorders, Elsevier, Volume 278, 1 January 2021, https://doi.org/10.1016/j.jad.2020.09.027

(22) Renzhou Gui : "The Impact of Emotional Music on Active ROI in Patients with Depression Based on Deep Learning: A Task-State fMRI Study": Hindawi, Computational Intelligence and Neuroscience, Volume 2019, Article ID 5850830, https://doi. org/10.1155/2019/5850830

(23) Wen Dong, Wei Zhenhao, et al."Deep Learning Methods to Process fMRI Data and Their Application in the Diagnosis of Cognitive Impairment: A Brief Overview and Our Opinion" JOURNAL=Frontiers in Neuroinformatics, VOLUME=12, 2018, DOI=10.3389/fninf.2018.00023

(24) Liu M, Cheng D and Yan W (2018) Classification of Alzheimer's Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12:35. doi: 10.3389/fninf.2018.00035

(25) A. Sau, I. Bhakta, Predicting anxiety and depression in elderly patients using machine learning technology, Healthcare Technology Letters, 4 (6) (2017 Nov 10), pp. 238-243

(26) R. S. McGinnis et al., "Rapid Anxiety and Depression Diagnosis in Young Children Enabled by Wearable Sensors and Machine Learning," 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 3983-3986, doi: 10.1109/ EMBC.2018.8513327.

(27) E. W. McGinnis et al., "Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and Depression in Early Childhood," in IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 6, pp. 2294-2301, Nov. 2019, doi: 10.1109/JBHI.2019.2913590.

(28) Nemesure, M.D., Heinz, M.V., Huang, R. et al. Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Sci Rep 11, 1980 (2021). https://doi.org/10.1038/s41598-021-81368-4

(29) Richter, T., Fishbain, B., Markus, A. et al. Using machine learning-based analysis for behavioral differentiation between anxiety and depression. Sci Rep 10, 16381 (2020). https://doi.org/10.1038/ s41598-020-72289-9

(30) ZhiHong Chen, Tao Yan, ErLei Wang, Hong Jiang, YiQian Tang, Xi Yu, Jian Zhang, Chang Liu, "Detecting Abnormal Brain Regions in Schizophrenia Using Structural MRI via Machine Learning", Computational Intelligence and Neuroscience, vol. 20200, Article ID 6405930, 13 pages, 2020. https:// doi.org/10.1155/2020/6405930

(31) Calhas et al."On the use of pairwise distance learning for brain signal classification with limited observations", Artificial Intelligence in Medicine, Elsevier, Volume 105, May 2020, https://doi. org/10.1016/j.artmed.2020.101852

(32) Tharindu Fernando, et al. "Neural memory plasticity for medical anomaly detection", Neural Networks, Volume 127, 2020, https://doi.org/10.1016/j.neunet.2020.04.011.

(33) Guo Y, Qiu J, Lu W. Support Vector Machine-Based Schizophrenia Classification Using Morphological Information from Amygdaloid and Hippocampal Subregions. Brain Sciences. 2020; 10(8):562. https://doi.org/10.3390/brainsci10080562 (34) C. -R. Phang, F. Noman, et al., "A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1333-1343, May 2020, doi: 10.1109/JBHI.2019.2941222.

(35) Oh J, Oh B-L, Lee K-U, Chae J-H and Yun K (2020) Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm. Front.

December 2021, Volume 6, Issue 1

Psychiatry 11:16. doi: 10.3389/fpsyt.2020.00016

(36) T. Matsubara, T. Tashiro and K. Uehara, "Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, pp. 2768-2779, Oct. 2019, doi: 10.1109/ TBME.2019.2895663.

(37) Alexandra Talpalaru, et al. Identifying schizophrenia subgroups using clustering and supervised learning, Schizophrenia Research, Volume 214, 2019, https://doi.org/10.1016/j. schres.2019.05.044.

(38) Sugai Liang, et al., Classification of First-Episode Schizophrenia Using Multimodal Brain Features: A Combined Structural and Diffusion Imaging Study, Schizophrenia Bulletin, Volume 45, Issue 3, May 2019, Pages 591–599, https://doi. org/10.1093/schbul/sby091

(39) Chatterjee, Indranath et al. "Identification of brain regions associated with working memory deficit in schizophrenia." F1000Research vol. 8 124. 30 Jan. 2019, doi:10.12688/f1000research.17731.1

(40) Kalmady, S.V., Greiner, R., Agrawal, R. et al. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. npj Schizophr 5, 2 (2019). https://doi.org/10.1038/s41537-018-0070-8

(41) Qureshi et al."3D-CNN based discrimination of Schizophrenia using resting-state fMRI", ELSEVIER, Artificial Intelligence in Medicine, Volume 98, July 2019, https://doi.org/10.1016/j. artmed.2019.06.003

(42) Wang Yu, Zhang Na, Yan Fengxia, Gao Yanping. Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost. Journal of Integrative Neuroscience, 2018, 17(4): 331-336.

(43) Manohar, L., Ganesan, K. Diagnosis of Schizophrenia Disorder in MR Brain Images Using Multi-objective BPSO Based Feature Selection with Fuzzy SVM. J. Med. Biol. Eng. 38, 917–932 (2018). https://doi.org/10.1007/s40846-017-0355-9

(44) Latha, M., Kavitha, G. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain. Magn Reson Mater Phy 31, 483–499 (2018). https://doi.org/10.1007/s10334-018-0674-z

(45) A. de Pierrefeu et al., "Interpretable and stable prediction of schizophrenia on a large multisite dataset using machine learning with structured sparsity," 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2018, pp. 1-4, doi: 10.1109/PRNI.2018.8423946.

(46) Xiao, Y., et al., Support vector machinebased classification of first episode drug-naïve schizophrenia patients and healthy controls using structu..., Schizophr. Res. (2017), https://doi. org/10.1016/j.schres.2017.11.037

(47) Lu, Xiaobing et al. "Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images." Medicine vol. 95,30 (2016): e3973. doi:10.1097/MD.00000000003973

(48) El-Sappagh, S., Alonso, J.M., Islam, S.M.R. et al. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. Sci Rep 11, 2660 (2021). https://doi.org/10.1038/s41598-021-82098-3

(49) Umeda-Kameyama Y, Kameyama M, Tanaka T, et al. Screening of Alzheimer's disease by facial complexion using artificial intelligence. Aging (Albany NY). 2021;13(2):1765-1772. doi:10.18632/ aging.202545

(50) Li, V.O.K., Lam, J.C.K., Han, Y. et al. Editorial: Designing a Protocol Adopting an Artificial Intelligence (AI)–Driven Approach for Early Diagnosis of Late-Onset Alzheimer's Disease. J Mol Neurosci 71, 1329–1337 (2021). https://doi. org/10.1007/s12031-021-01865-z

(51) Tsuji, S., Hase, T., Yachie-Kinoshita, A. et al. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer's disease. Alz Res Therapy 13, 92 (2021). https://doi. org/10.1186/s13195-021-00826-3

(52) Bahado-Singh RO, Vishweswaraiah S, et al. (2021) Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer's disease. PLoS ONE 16(3): e0248375. https://doi.org/10.1371/journal.pone.0248375

(53) Ludwig et al., "Machine Learning to Detect Alzheimer's Disease from Circulating Non-coding RNAs", ELSEVIER, Genomics, Proteomics and Bioinformatics, Volume 17, Issue 4, August 2019, https://doi.org/10.1016/j.gpb.2019.09.004

(54) B. Richhariya, M. Tanveer, ... A. R.-... S. P. and, and undefined 2020, "Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)," Elsevier.

(55) R. Khan, M. Tanveer, ... R. P.-E., and undefined 2020, "A novel method for the classification of Alzheimer's disease from normal controls using magnetic resonance imaging," Wiley Online Library, (56) F. Zhang et al., "Voxel-based morphometry: improving the diagnosis of Alzheimer's disease based on an extreme learning machine method from Journal of Advanced Medical Sciences and Applied Technologies

the ADNI cohort," Elsevier.

(57) J. Islam, Y. Z.-B. informatics, and undefined 2018, "Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks," Springer.

(58) "30th European Symposium on Computer Aided Chemical Engineering," Accessed: Sep. 09, 2021.

(59) M.-S. Mushtaq and A. Mellouk, "Methodologies for Subjective Video Streaming QoE Assessment," Quality of Experience Paradigm in Multimedia Services, pp. 27–57, 2017, doi: 10.1016/B978-1-78548-109-3.50002-3.

(60) R. U. Khan, M. Tanveer, and R. B. Pachori, "A novel method for the classification of Alzheimer's

disease from normal controls using magnetic resonance imaging," Expert Systems, vol. 38, no. 1, Jan. 2021, doi: 10.1111/EXSY.12566.

(61) K. Sagayam, P. Bruntha, M. Sridevi, ... M. S.-... V. P. for, and undefined 2021, "A cognitive perception on content-based image retrieval using an advanced soft computing paradigm," Elsevier, Accessed: Sep. 07, 2021.

(62) Y. Tan, "GPU-Based Parallel Implementation of Swarm Intelligence Algorithms," GPU-Based Parallel Implementation of Swarm Intelligence Algorithms, pp. 1–236, Apr. 2016, doi: 10.1016/ C2015-0-02468-6.