Possible Molecular Mechanisms for Paramecium Learning

Abolfazl Alipour, Mohammadreza Dorvash, Yasaman Yeganeh, Gholamreza Hatam, Seyed Hasan Seradj


Learning is a cornerstone of intelligent behavior in animals. This behavior has been mostly studied in organisms with a fairly complex nervous system. However, recent reports of learning in unicellular organisms suggested the existence of associative learning in unicellular organisms. In particular, the capability to associate different light intensities with cathodal stimulation in paramecium is of special interest. We have investigated the previous reports on this phenomenon and proposed a molecular mechanism for learning behavior in paramecium. Specifically, we have used the existing evolutionary evidence in order to find the possible molecular pathways that may play a role in Paramecium’s learning. Moreover, previous studies have been reviewed in order to propose new experiments that can verify the plausibility of the present hypothesis

Full Text:



Bear MF, Connors BW, Paradiso MA. Neuroscience. Philadelphia: Lippincott Williams & Wilkins; 2007.

Wood DC. Habituation in stentor: Produced by mechanoreceptor channel modification. Journal of Neuroscience. 1988; 8(7):2254-8. PMID: 3249223

Rayport SG, Schacher S. Synaptic plasticity in vitro: Cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. Journal of Neuroscience. 1986; 6(3):759-63. PMID: 3958793

Mutschler I, Wieckhorst B, Speck O, Schulze-Bonhage A, Hennig J, Seifritz E, et al. Time scales of auditory habituation in the amygdala and cerebral cortex. Cerebral Cortex. 2010; 20(11):2531–9. doi: 10.1093/cercor/bhq001

Rosburg T, Zimmerer K, Huonker R. Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval. Experimental Brain Research. 2010; 205(4):559–70. doi: 10.1007/s00221-010-2391-3

Hudspeth AJ, Jessell TM, Kandel ER, Schwartz JH, Siegelbaum SA. Principles of neural science. Amsterdam: Elsevier; 2013.

Nakagaki T, Yamada H, Tóth Á. Intelligence: Maze-solving by an amoeboid organism. Nature. 2000; 407(6803):470. doi: 10.1038/35035159

Nakagaki T, Kobayashi R, Nishiura Y, Ueda T. Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society B: Biological Sciences. 2004; 271(1554):2305–10. doi: 10.1098/rspb.2004.2856

Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae anticipate periodic events. Physical Review Letters. 2008; 100(1). doi: 10.1103/physrevlett.100.018101

Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, et al. The physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biology and Evolution. 2015; 8(1):109–25. doi: 10.1093/gbe/evv237

Armus HL, Montgomery AR, Jellison JL. Discrimination learning in paramecia (P. caudatum). The Psychological Record. 2006; 56(4):489-98.

Day LM, Bentley M. A note on learning in paramecium. Journal of Animal Behavior. 1911; 1(1):67–73. doi: 10.1037/h0071290

French JW. Trial and error learning in paramecium. Journal of Experimental Psychology. 1940; 26(6):609–13. doi: 10.1037/h0059015

Hanzel TE, Rucker W. Escape training in paramecia. Journal of Biological Psychology; 1971.

Huber JC, Rucker WB, McDiarmid CG. Retention of escape training and activity changes in single paramecia. Journal of Comparative and Physiological Psychology. 1974; 86(2):258–66. doi: 10.1037/h0035957

Applewhite PB, Gardner FT. Tube-escape behavior of paramecia. Behavioral Biology. 1973; 9(2):245–50. doi: 10.1016/s0091-6773(73)80159-2

Hinkle DJ, Wood DC. Is tube-escape learning by protozoa associative learning. Behavioral Neuroscience. 1994; 108(1):94–9. doi: 10.1037/0735-7044.108.1.94

Gelber B. Investigations of the behavior of paramecium aurelia: I. Modification of behavior after training with reinforcement. Journal of Comparative and Physiological Psychology. 1952; 45(1):58–65. doi: 10.1037/h0063093

Jensen DD. More on “Learning” in Paramecia. Science. 1957; 126(3287):1341–2. doi: 10.1126/science.126.3287.1341

Mingee CM. Retention of a brightness discrimination task in Paramecia (P. caudatum). International Journal of Comparative Psychology. 2013; 26(3):202-12.

Verduyckt M, Vignaud H, Bynens T, Van den Brande J, Franssens V, Cullin C, et al. Yeast as a model for Alzheimer’s disease: Latest studies and advanced strategies. Methods in Molecular Biology. 2016; 197–215. doi: 10.1007/978-1-4939-2627-5_11

Moosavi B, Mousavi B, Macreadie IG. Yeast model of Amyloid-β and Tau aggregation in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2015; 47(1):9–16. doi: 10.3233/jad-150173

Hameroff S, Penrose R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation. 1996; 40(3-4):453–80. doi: 10.1016/0378-4754(96)80476-9

Hameroff S, Penrose R. Consciousness in the universe. Physics of Life Reviews. 2014; 11(1):39–78. doi: 10.1016/j.plrev.2013.08.002

Hameroff SR. Did consciousness cause the Cambrian evolutionary explosion. In S Hameroff, A Kaszniak, A Scott (Eds.) Toward a science of consciousness II: The second Tucson discussions and debates. Cambridge: MIT Press; 1998.

Dorvash M, Hatam Gh, Yeganeh Y, Alipour A. A replication study on paramecium learning. Paper presented at: 3rd Congress of Basic and Clinical Neuroscience. 29-31 October 2014; Tehran, Iran. doi: 10.13140/RG.2.1.1912.3920

Quickenden TI, Hee SSQ. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Photochemistry and Photobiology. 1976; 23(3):201–4. doi: 10.1111/j.1751-1097.1976.tb07242.

Shen X, Mei W, Xu X. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia. 1994; 50(10):963–8. doi: 10.1007/bf01923488

Fels D. Cellular communication through light. PLoS ONE. 2009; 4(4):5086. doi: 10.1371/journal.pone.0005086

Alipour A. Demystifying the biophoton-induced cellular growth: A simple model. Journal of Advanced Medical Sciences and Applied Technologies. 2015; 1(2):112. doi: 10.18869/nrip.jamsat.1.2.112

Kreimer G. The green algal eyespot apparatus: A primordial visual system and more? Current Genetics. 2008; 55(1):19–43. doi: 10.1007/s00294-008-0224-8

Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, et al. Archaeal-type rhodopsins in Chlamydomonas: Model structure and intracellular localization. Biochemical and Biophysical Research Communications. 2003; 301(3):711–7. doi: 10.1016/s0006-291x(02)03079-6

Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002; 415(6875):1047–51. doi: 10.1038/4151047a

Cohen P. The structure and regulation of protein phosphatases. Annual Review of Biochemistry. 1989; 58(1):453–508. doi: 10.1146/annurev.bi.58.070189.002321

Poovaiah BW, Reddy ASN, Leopold AC. Calcium messenger system in plants. Critical Reviews in Plant Sciences. 1987; 6(1):47–103. doi: 10.1080/07352688709382247

Roberts D. Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology. 1992; 43(1):375–414. doi: 10.1146/annurev.arplant.43.1.375

Litvin FF, Sineshchekov OA, Sineshchekov VA. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978; 271(5644):476–8. doi: 10.1038/271476a0

Kamiya R. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. The Journal of Cell Biology. 1984; 98(1):97–107. doi: 10.1083/jcb.98.1.97

Harz H, Hegemann P. Rhodopsin-regulated calcium currents in Chlamydomonas. Nature. 1991; 351(6326):489–91. doi: 10.1038/351489a0

Jekely G. Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1531):2795–808. doi: 10.1098/rstb.2009.0072

Yoon HS, Hackett JD, Pinto G, Bhattacharya D. The single, ancient origin of chromist plastids. Journal of Phycology. 2002; 38(1):40. doi: 10.1046/j.1529-8817.38.s1.8.x

Hand WG, Schmidt JA. Phototactic orientation by the marine dinoflagellate gyrodinium dorsum kofoid. The Journal of Protozoology. 1975; 22(4):494–8. doi: 10.1111/j.1550-7408.1975.tb05217.x

Huang B. The contractile process in the ciliate, stentor coeruleus: I. The role of microtubules and filaments. The Journal of Cell Biology. 1973; 57(3):704–28. doi: 10.1083/jcb.57.3.704

Tao N, Orlando M, Hyon JS, Gross M, Song PS. A new photoreceptor molecule from Stentor coeruleus. Journal of the American Chemical Society. 1993; 115(6):2526–8. doi: 10.1021/ja00059a068

Checcucci G, Shoemaker RS, Bini E, Cerny R, Tao N, Hyon JS, et al. Chemical structure of blepharismin, the photosensor pigment for blepharisma japonicum. Journal of the American Chemical Society. 1997; 119(24):5762–3. doi: 10.1021/ja970713q

Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270–6. doi: 10.1242/jeb.023283

Thiele J, Schultz JE. Ciliary membrane vesicles of paramecium contain the voltage-sensitive calcium channel. Proceedings of the National Academy of Sciences. 1981; 78(6):3688–91. doi: 10.1073/pnas.78.6.3688

Doughty M, Dryl S. Control of ciliary activity in Paramecium: An analysis of chemosensory transduction in a eukaryotic unicellular organism. Progress in Neurobiology. 1981; 16(1):1–115. doi: 10.1016/0301-0082(81)90008-3

Hinrichsen RD, Saimi Y, Hennessey T, Kung C. Mutants in paramecium tetraurelia defective in their axonemal response to calcium. Cell Motility. 1984; 4(4):283–95. doi: 10.1002/cm.970040406

Machemer H, Ogura A. Ionic conductances of membranes in ciliated and deciliated paramecium. The Journal of Physiology. 1979; 296(1):49–60. doi: 10.1113/jphysiol.1979.sp012990

Brehm P, Eckert R. An electrophysiological study of the regulation of ciliary beating frequency in paramecium. The Journal of Physiology. 1978; 283(1):557–68. doi: 10.1113/jphysiol.1978.sp012519

Nakaoka Y, Imaji T, Hara M, Hashimoto N. Spontaneous fluctuation of the resting membrane potential in Paramecium: Amplification caused by intracellular Ca2+. Journal of Experimental Biology. 2008; 212(2):270–6. doi: 10.1242/jeb.023283

DOI: http://dx.doi.org/10.18869%2Fnrip.jamsat.3.1.39


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.