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      Ultra-weak photon emission in 

biological objects 
 

In 1920’s, A. G. Gurwitsch was the first cell 

biologist who discovered the phenomenon of the 

ultra-weak photon emission (UPE) during the period 

of the cell division of onion root tips (1). This 

phenomenon is also known as mitogenetic 

radiation, dark luminescence, low level 

chemoluminescence and biophoton emission (2). 

The emission of mitogenic radiations are often 

attributed to de-excitation of the free radicals in 

biological objects. This mechanism has been 

supported by experimental evidence such as 

increased biophoton emission through addition of 

hydrogen peroxides to the tissue (3) or increased  

 

 

 

 

 

 

biophoton emission by reducing the antioxidants in 

tissue (4). This relationship has been supported by 

several lines of evidence over recent years. Table 1 

presents an outline of such supporting evidence.  
 

None-Chemical Distant Cellular 

Interaction, an explanatory gap 
 

Along with the discovery of biophoton emissions, 

several studies suggested the “intercellular 

communication” as the biological role of the 

biophoton emission. In fact, Gurwitsch himself was 

the first one to report that the onion roots can 

induce mitosis in each other only by emitting 

biophotons (1). This early discovery was followed by 

a load of subsequent studies demonstrating the 
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same effect in yeast cells (10), pig’s neutrophils 

(11), developing tissues (12) and paramecium (13). 

A short list of similar reports is presented in Table 2 

while a comprehensive review has been provided in 

(14). Although mechanism for biophoton emission 

is well documented, plausible models for biophonic 

communication are still lacking. In particular, 

biophoton-induced mitosis is among unexplained 

issues. Therefore, the main aim of the present work 

is to propose a simple model to possibly explain the 

mechanism of “biophoton-induced mitosis”. 

 

 The hypothesis 
 

Literally, the term “biophoton” indicates the 

source of a photon and these photons do not seem 

to have fundamental differences with other photons 

emitted from different sources. Considering this, 

the present paper tries to suggest possible cellular 

pathways which may underpin the photon-induced 

growth. It is hypothesized that biophoton emissions 

from one cell can deactivate a flavin-binding 

photoreceptor in the other. This deactivation will 

result in an influx of Ca2+ ions which induce mitosis 

thorough Ca2+-Calmodulin-related cascades in the 

receiver cell. Figure 1 is a schematic representation 

of this hypothesis. 

 

Photons can induce growth, regardless 

of their origin  
 

Photon induced growth is ubiquitous among 

living organism, especially in plant tissues. Early 

observations of this phenomenon in plants belong 

to the last decades of the 19th century (20). In the 

upcoming years of the 20th century, the similar 

observation was made in animal cells and was 

reffered to as LASER wound-healing (21). The 

nature photoreceptor proteins mediating this effect 

in plants was not explained until 1993 (22). These 

proteins are phototropines (23), photoactivated 

adenylyl cyclase (24) and cryptochromes (25). 

However, the counterpart proteins in the animal 

cells which mediate the same effect have remained 

unknown.  

 

Mediators of light-induced growth, 

cryptochrome pathway, cell and circadian 

cycle 
 

Among all above photoreceptor proteins, 

cryptochrome (Cry) is a particularly interesting. Cry 

protein highly similar to photolyase proteins which 

repair DNA by breaking the UV-induced pyrimidine 

dimers through a light-induced process. Both Cry 

and Photolyase proteins use Flavin Adenine 

Dinucleotide (FAD) as their cofactor.  However, Cry 

proteins -except the DASH Cry in some species- do 

not have the capability of DNA repair. Since the 

knockdown of Cry in mouse completely abolishes 

the circadian clock (26, 27), the main function of 

Cry proteins is assumed to be the regulation of the 

circadian clock. It is remarkable that Cry regulates 

the circadian rhythms in a “light independent” 

manner. This fact questions the benefit of 

conserving the photoreception capability of Cry in 

evolution and the answer to this question is still 

unknown. Hence, there might be other conceivable 

functions for Cry. To identify possible roles of 

photoreception capability in Cry, inspecting the 

intertwined relationship between the circadian cycle 

and cell cycle seems warranted (28).   

 

Possible pathway for biophoton-

induced growth: cryptochrome 
 

As mentioned above, Cry proteins are the major 

regulators of the circadian rhythm while they can 

also affect the cell cycle. Cry proteins inhibit cAMP 

production (29, 30) which is a secondary 

messenger allowing Ca2+ channels opening. 

Therefore, it is conceivable that Cry protein can 

suppress the inward flow of Ca2+ but the pivotal 

interaction that bridges the gap in the cycle is the 

interaction between Cry proteins and photons. 

 

It is known that light emission causes 

ubiquitnation and subsequent proteolytic 

degradation of Cry in drosophila (31, 32) and this 

Table 1. A short list of evidence establishing the relationship between free radicals and biophoton emission 
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degradation is stopped by turning off the exposing 

light (33). In other words, light degrades Cry and 

causes mitosis through disinhibition of the Ca2+ 

inward flow and subsequent formation of Ca2+-

Calmodulin complex. Consequently, 

biophoton/photon emission “disinhibits” cell 

growth.   
 

Discussion and Conclusion  
 

It is hypothesized that photon emission, 

regardless of its origin (biological/non-biological) 

can affect the cell growth through Cry proteins. 

Some other characteristics of Cry can be used to 

support the current hypothesis. First, any 

mechanism which mediates the biophoton/photon 

induced growth should exist in a wide variety of 

species. Cry proteins are expressed in animal cells, 

plants, fungi (34), and even some bacterial species 

(35, 36). Therefore, it fulfills the first criterion. 

Secondly, the gene expression profile of the Cry 

protein in human and mouse shows that it is being 

expressed in all investigated tissues (37). Hence, 

ubiquity of Cry protein makes it a possible candidate 

for mediation of a ubiquitous process. However, 

these evidences cannot guarantee that the Cry 

mediates all existing biophotonic communications. 

In Arabidopsis thaliana, Cry knock-out mutants 

show the light induced Ca2+ influx while phototropin 

knock-out mutants cannot demonstrate this effect 

(38). Consequently, it seems that the light-

dependent Ca2+ influx is mediated through the 

phototropin proteins rather than cryptochromes in 

this plant. Thus it is possible that biophotonic 

communication in some plants happens through 

other proteins.  Additionally, the interaction 

between Cry protein and cell cycle is another 

complicated issue that should be considered. The 

main interaction site between Cry and cell cycle is 

the G2/M transition check-point. It is reported that 

Cry proteins promote G2/M transition through 

inhibition of wee1 gene expression (39). On the 

other hand, Cry proteins cause degradation of Bmal 

proteins. Bmal proteins enhance the expression of 

the wee1 gene and act against Cry by inhibiting the 

cell proliferation. Based on such evidence, Cry can 

promote cell proliferation which turns to be 

completely against the current hypothesis. 
 

 

 

 

Fortunately, since Bmal mutant cell lines do not 

show a higher proliferation rate or promotion of 

spontaneous cancer comparing with wild types, the 

interaction between Cry and cell cycle does not 

seem to have a significant impact on cell growth. 

Moreover, both Cry and Bmal mutant cells lead to 

low proliferative rates which questions the impact of 

the Cry on cell proliferation again. Therefore, the cell 

cycle interactions of the Cry seem to be still away 

from a comprehensive understanding. 

In summary, the current hypothesis asserts that 

a simple photochemical cycle including 

cryptochrome, cAMP and Ca2+ may possibly answer 

a century-old question. However, only if the 

predictions of the hypothesis come true, it can be 

Table 2. Several samples of the light-growth interactions in biological systems. 

 

Figure 1. Schematic representation of the hypothesis 
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accounted as plausible. Some predictions of this 

hypothesis are outlined below:  

• There is a positive correlation between 

photon/biophoton emission and cAMP 

concentration in the cell.  

• Biophoton-induced mitosis should be 

inhibited by Ca2+ channel blockers. 

• Knock-down Cry1 and Cry2 cells cannot 

show the so-called “biophotonic communication”. 

• Since blue light has the peak absorbance 

for Cry, blue light photons are the most effective 

“mitogenic” photons and they can accelerate light-

induced wound healing. 

It is noteworthy to mention that if the current 

hypothesis will be confirmed, it will help to 

determine the types of tissues that phototherapy 

has its peak efficacy based on the tissue’s cry gene 

expression profile. 
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