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Objectives: Cerebral ischemic preconditioning lessens stroke-induced injuries, but it is 
clinically feasible only when the occurrence of stroke is predictable. Reperfusion plays a critical 
role against cerebral injury after stroke; we tested the hypothesis that interrupting ischemia 
during early reperfusion, i.e. Postconditioning (POCO) affects CXC chemokine expression and 
further reduce inflammation in rat model of ischemia/reperfusion. 

Materials & Methods: Adult male Wistar rats (250-300 g) were used in this experiment. Using 
4-vessel occlusion method, global cerebral ischemia was induced and POCO was performed 
by applying 3 cycles of 15-s/15-s reperfusion/reocclusion after a 45-s reperfusion (POCO-
45-15/15). Western blotting analysis was used to investigate CXCL1, CXCL10 and CXCL12 
expression 24 h, 48 h and one week after ischemic postconditioning (iPOCO).

Results: Based on the results, iPOCO attenuates the expression of inflammatory chemokines 
CXCL1 and CXCL10 in hippocampus area of postconditioned rats, while the CXCL12 was not 
affected by iPOCO.

Conclusion: Current findings may support chemokines role in iPOCO via reduction of 
inflammation. Also there could be a link between postconditioning, stress and inflammation 
through chemokines. 
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1. Introduction

erebrovascular accidents are amongst 
the leading causes of either death or 
permanent disability without an effec-

tive treatment so far [1]. Extensive research has been 
aimed at finding effective strategies to ameliorate 
Ischemia/Reperfusion (I/R) injury. Research in treat-
ing this type of injury has led to the discovery of the 
two recently introduced concepts; preconditioning C
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and postconditioning. Preconditioning has been dem-
onstrated to seriously protect against I/R injury. How-
ever, its clinical application is only possible when the 
occurrence of stroke is predictable and controllable.

Immediate initiation of reperfusion is the most efficacious 
treatment to reduce I/R injury. However, reperfusion may 
cause additional injury, too. Another newly established con-
cept that lacks the clinical restrictions of preconditioning is 
postconditioning in which brief repetitive cycles of ischemia 
with intermittent reperfusion is followed by prolonged isch-
emia elicited tissue protection [2, 3]. 

The protective role of postconditioning is well demon-
strated in brains of different animal models such as rats 
[4-6], rabbits [7], and mice [8]. Nevertheless, whether 
postconditioning has protective effects against inflam-
mation induced by global cerebral I/R injury is yet to be 
fully investigated. Experimental studies have indicated 
that infiltration of inflammatory cells, including neutro-
phils, tissue mast cells, monocytes and platelets during 
reperfusion have a crucial role in I/R injury. These cells 
contribute to the phenomenon of I/R by releasing oxy-
gen-derived free radicals, proteases and leukotrienes.

Thus, modulation of cytokine induced inflammatory re-
sponses may have a direct impact on I/R injury and free 
flap survival [9]. Chemokines are low molecular weight 
proteins (8–17 kDa) [10]. A growing body of evidence has 
indicated the involvement of chemokines under patholog-
ical and repair circumstances in CNS [11, 12]. Thus our re-
search team aimed to examine whether chemokines play 
a role in postconditioning and hence reduce inflammation 
in rat model of I/R via controlling chemokine levels.

2. Materials and Methods

Animals

Male Wistar rats weighing 250-300 g were kept un-
der standard laboratory conditions with free access 
to food and water. The room temperature was main-
tained at 37°C. Animals in each group were housed in 
the same animal care facility during a 12:12 h light/
dark cycle throughout the study. All experiments were 
approved by the Ethics Committee of Rafsanjan Uni-
versity of Medical Sciences. All efforts were made to 
minimize the pain and stress of the rats. 

Experimental groups

The rats were randomly allocated into the following 
experimental groups (10 rats per group):The sham-

operated control group, in which the animals under-
went only anesthesia without occlusion. In three oth-
er groups, the animals underwent ischemia by 4-VO 
(4-vessel occlusion) method, then the rats were killed 
and samples were obtained from brain tissue at 24 h, 
48 h and 1 week after operation. In the postcondition-
ing groups (3 groups), all animals underwent 3 cycles of 
reperfusion/reocclusion and their brain samples were 
obtained at 24 h, 48 h and 1 week after operation. This 
model of postconditioning was based on the methods 
described before.

Animal model and surgical procedure 

The transient global cerebral ischemia was induced 
by 4-VO method [13]. Rats were first anesthetized in-
traperitoneally with ketamine hydrochloride (80 mg/kg) 
and xylazine (4 mg/kg). On the first day, their common 
carotid arteries were exposed and both vertebral arter-
ies were electrocauterized permanently. On the next 
day, cerebral ischemia was induced by occlusion of both 
common arteries with aneurysm clips for 10 min, then 
the clips were removed for reperfusion. Rectal tempera-
ture was maintained at 37°C with a temperature feed-
back heating pad during the procedure. Rats that had 
lost their righting reflex, or dilated pupils and were un-
responsive to light be used in the experiments [14, 15].

Postconditioning protocols

POCO-45-15/15 animals were subjected to 3 cycles 
of 15-s/15-s reperfusion/ reocclusion applied after 45 
s reperfusion.

Western blot analysis 

Proteins were extracted from freshly dissected and ho-
mogenized hippocampus tissues using lysis buffer (Cell 
Signaling Technology, Beverly, MA, USA).

Samples were used for Sodium Dodecyl Sulfate-Poly-
Acrylamide Gel Electrophoresis (SDS-PAGE). Immu-
noblotting and densitometry were performed to quan-
tify the expression of CXCL1, CXCL10 and CXCL12. Equal 
amounts of protein (35 g) were loaded and resolved on 
a 10% SDS-PAGE and then transferred to nitrocellulose 
membrane. After blocking with 3% (w/v) milk in Tween 
(10 mM Tris, pH 7.4 containing 140 mM NaCl, 0.1% [v/v] 
Tween 20), the nitrocellulose membrane was incubated 
overnight at 4°C in PBS/Tween containing 3% (w/v) milk, 
including anti-rat CXCL1, CXCL10, CXCL12 and β-actin 
monoclonal antibody (Sigma, Mo, USA) (R&D system, 
UK). Subsequently, anti-rat horseradish peroxidase-
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conjugated antibodies (Amersham Life Science, UK) (di-
luted, 1:1000) were used, and to detect localization and 
amount of protein the enhanced chemiluminescence 
detection system (Amersham Life Science, UK) was ap-
plied. Also β-actin was used as an internal control to 
compare the data from different films. 

Statistical analysis

All data were expressed as mean±SEM. Comparisons of 
variables were performed using the Student’s t test. The 
differences were considered significant when P<0.05.

3. Results

Results of the present study indicated that the pro-
tein levels of both CXCL1 and CXCL10 as members of 
functionally proinflammatory chemokines decreased in 
iPOCO treated group compared to untreated groups. In 
western blotting analysis the expression of chemokines 
at control level (initiated point of postconditioning) was 
assigned as 100% of expression in each chemokine as-
sayed and other groups were proportional to that. 

The average concentration of CXCL1 was 98%, 98% 
and 96.5% after 24 h, 48 h and 1 week following induc-
tion of ischemia and was 94%, 78% and 55% after 24 h, 

48 h and 1 week following iPOCO, respectively. These 
data suggest the regulatory effects of postconditioning 
on CXCL1 (Figure 1). 

Our findings also indicated that the mean concentra-
tions of CXCL10 were 97%, 98%, and 96%, 24 h, 48 h, 
and 1 week following induction of ischemia, also its 
mean concentrations were 98%, 50% and 10%, 24 h, 48 
h and 1 week following iPOCO, respectively. The com-
parison between ischemia group and group received 
postconditioning suggests the regulatory effect of post-
conditioning on this chemokine (Figure 2).

We did not detect any alteration in CXCL12 expression 
and its concentrations did not significantly alter in post-
conditioning group compared to the control. The mean 
concentrations of CXCL12 were 98%, 94% and 96% after 
24 h, 48 h and 1 week following induction of ischemia 
and were 95%, 97% and 96.5% after 24 h, 48 h and 1 
week following iPOCO, respectively (Figure 3). These 
findings support that postconditioning does not affect 
this chemokine and is unable to control its expression.

This means that postconditioning is able to control 
the expression of chemokines CXCL1 and CXCL10 but 
not the constitutive chemokine CXCL12. On the other 

Figure 1. Expression of CXCL1 at protein level in Wistar rats either with or without POCO

In treatment group, rats were subjected to POCO. At indicated time points, the hippocampus was isolated and homogenized, its proteins 
were extracted and followed by SDS-PAGE and further immunoblotting with specific antibody against CXCL1 and normalized with β-actin; 
Profile A: A representative profile of western blotting; Profile B: The expression of CXCL1 at control was assigned as 100% expression and 
the expression of CXCL1 at other time points was proportional to that; Data are expressed as mean ± SEM for 10 separate experiments; * 
# Significant difference with the without POCO group.

Abbreviations: PC: Positive Control, W: Week, h: Hour, POCO: Postconditioning
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hand, postconditioning reduces inflammation through 
controlling of proinflammatory CXC chemokines.

4. Discussion

The current study aimed to evaluate the expression of 
CXCL1, CXCL10 and CXCL12 following I/R in the group 
which received postconditioning protocol.

In the present study, we demonstrated that ischemic 
postconditioning attenuates brain damage probably via 
decreased recruitment of immune cells into the brain 
tissue, decreased expression of the proinflammatory 
mediators CXC chemokines CXCL1 and CXCL10 but not 
homeostatic chemokine CXCL12. 

These immune cell promigratory proteins have been 
reported to have potent chemotactic activity for vari-
ous blood derived cell types, including neutrophils and 
lymphocytes and therefore play a significant role in the 
acute inflammatory responses [16]. The decrease in 
CXCL1 and CXCL10 proteins in brain tissue by postcondi-
tioning at the molecular level suggests a mechanism by 

which inflammation decreases via reduced immune cell 
effectors recruitment.

In a previous investigation, it has been shown that 
postconditioning could significantly decrease infarct size 
and endothelial dysfunction following I/R in a canine 
model [3]. Zhao and colleagues reported that the early 
phase of reperfusion is a critical phase in injures follow-
ing ischemia, so treatment strategies in this point may 
reduce these downstream pathological consequences 
of I/R injury [3]. The infarct sparing effect of postcon-
ditioning in the rabbit [2] was greater than which ob-
served in the rat in the present study but was consistent 
with that observed in the canine model by Zhao and as-
sociates [3]. 

Oxygen derived free radicals production increases 
within the first minutes [17] and peaks 4–7 min after the 
onset of I/R [18, 19]. This oxidative burst is probably de-
rived in vivo to some extent from activated neutrophils 
recruited to the lesions [17]. Free oxygen radicals trigger 
the release of proinflammatory mediators, transcrip-
tion factors such as NF-kB (NF-kappa B), and stimulate 
the surface expression of adhesion molecules on coro-
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Figure 2. Expression of CXCL10 at protein level in Wistar rats either with or without POCO

In treatment group, rats were subjected to POCO. At indicated time points, the hippocampus was isolated and homogenized, its proteins 
were extracted and followed by SDS-PAGE and further immunoblotting with specific antibody against CXCL10 and normalized with β-actin; 
Profile A: A representative profile of western blotting; Profile B: The expression of CXCL10 at control was assigned as 100% expression 
and CXCL10 expression at other time points was proportional to that. Data are expressed as mean ± SEM for 10 separate experiments; * 
Significant difference with control group; * # Significant difference with the without POCO group.

Abbreviations: PC: Positive Control; W: Week; h: Hour; POCO: Postconditioning
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nary vascular endothelium [20]. Regarding our previous 
studies in cell systems, these chemokines are regulated 
by several cell signaling pathway mediators, including 
MAPK (Mitogen-activated protein kinases) and NFkB [11, 
12, 21]. Therefore, the higher level of CXCL1 and CXCL10 
following I/R could be due to activation of these extra cel-
lular signaling pathways which regulate their expression.

Numerous studies have reported that neutrophils 
migrate into and accumulate in ischemic-reperfused 
myocardium [22-24]. Neutrophil accumulation starts 
immediately at the onset of I/R [23, 25, 26] and con-
tinues for 24 h in canine models [27]. Moreover, it has 
been showed that a reduction in neutrophil activity and 
accumulation is associated with a concomitant reduc-
tion in infarct size [28-30]. However, it is still controver-
sial whether the presence of neutrophils in reperfused 
myocardium is related to subsequent injury during re-
perfusion, or simply an inflammatory response to injury 
that results from other causes, such as oxygen radicals, 
cytokines, and so on [31].

I/R injury begins by production of reactive oxygen spe-
cies, which initially appears to be responsible for the 

generation of chemotactic activity for neutrophils prob-
ably via chemokine expression. It is well-documented 
that neutrophils and other peripheral blood cell types 
are an enriched source of chemokines and over expres-
sion of CXC chemokines in our model of I/R could also 
probably be due to the accumulation of neutrophils 
based on aforementioned evidence.

Furthermore, following I/R, a spectrum of cytokines 
and mediators are released which may be responsible 
for priming neutrophils. These proinflammatory mol-
ecules include tumor necrosis factor-α (TNF-α) and IL-6 
and they can induce direct tissue damage and are also 
potent activators of neutrophils [32, 33]. Sequestration 
of neutrophils and their enzymatic products in lung tis-
sue result in enhancement of microvascular permeabil-
ity, perivascular and interstitial edema, and pulmonary 
edema [34]. Cytokine (such as TNF-α, IL-6) released 
along with enzymatic products of neutrophils may also 
be responsible for up-regulation of proinflammatory 
CXC chemokines following I/R. The regulating effectors 
of these mediators on chemokine expression is revealed 
by this research group [11, 21].

Figure 3. Expression of CXCL12 at protein level in Wistar rats either with or without POCO

In treatment group, rats were subjected to POCO. At indicated time points, the hippocampus was isolated and homogenized, its proteins 
were extracted and followed by SDS-PAGE and further immunoblotting with specific antibody against CXCL12 and normalized with β-actin; 
Profile A: A representative profile of western blotting; Profile B: The expression of CXCL12 at control was assigned as 100% expression and 
the expression of CXCL12 at other time points was proportional to that; Data are expressed as mean±SEM for 10 separate experiments. 

Abbreviations: PC: Positive Control; W: Week; h: Hour; POCO: Postconditioning
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Therefore, inhibiting the production of oxygen radi-
cals, inflammatory cytokine, chemokine releases and 
neutrophil activation can be therapeutic options for 
limiting injuries following I/R [35, 36].

Consistent with the findings of previous studies which 
reported reduction of plasma levels of TNF-α and IL-6 
following both postconditioning and preconditioning, in 
the current study, the hippocampus protection may be 
associated with the suppressions of proinflammatory 
cytokines releases which can attenuate the systemic 
injury [37, 38]. In other words, decreased level of pro-
inflammatory cytokines (TNF-α, IL-6, etc.) as upstream 
regulators for expression of CXCL1 and CXCL10 may 
possibly explain a leading mechanism by which these 
proinflammatory chemokines decrease following post-
conditioning in I/R in our rat model of postconditioning.

Chemokines, especially CXCL1 and CXCL12 are further 
demonstrated to play a pivotal role in the regulation of 
hypoxic preconditioning and pharmacological postcon-
ditioning in some cell systems [39-41].

In agreement with our model, human studies indicate 
that elevated CSF in acute ischemic stroke patients sug-
gests chemokine up-regulation during an early phase of 
stroke which is in line with studies that showed increased 
level of CXCL1 and CXCL10 (not CXCL12) in patients with 
cerebral ischemia. Previous studies also have shown that 
in vitro cultured astrocytes and microglia [42] as well as 
neutrophils [43] can respond to cytokines such as TNF-α 
or interleukin-1 (IL-1), which initiates stroke-induced in-
flammatory reaction. Thus, both brain resident cells and 
brain-invaded neutrophils could be potential sources 
of CXCL1 local production in stroke. This may confirm 
our findings regarding the elevated level of CXCL1 and 
CXCL10. This hypothesis is favored by the investigation 
claiming that mRNA [44] and KC protein [45], homolo-
gous to human CXCL1, is elevated in the brain lesion re-
gions of rats subjected to ischemic stroke. 

What type of functions in the pathophysiology of 
stroke may locally release CXCL1 and CXCL10 in our 
model? CXCL1 and CXCL10 with their potent neutrophils 
and lymphocytes chemotactic and activating properties 
could contribute, like other cytokines or chemokines 
released after cerebral ischemia, to post I/R stroke-de-
rived inflammation involving leucocyte accumulation 
within ischemic brain. Thus, early local production of 
both CXCL1 and CXCL10 in I/R may affect the timetable 
of neutrophils recruitment into ischemic brain following 
I/R, as they initiated their migration within hours to days 
of I/R with maximal response 24 to 48 h after I/R [46]. 

IL-8, another CXC chemokine with potent neutrophils at-
tracting activity, may play the similar role as I/R [47-49].

5. Conclusion

The results of present study support the role of che-
mokines in iPOCO via reduction of inflammation. Also 
there could be a link between postconditioning, stress, 
and inflammation through chemokines. 
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